检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是提示词工程 提示词工程简介 提示词工程(Prompt Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业
常见问题 使用java sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency
NLP大模型训练常见报错与解决方案 NLP大模型训练常见报错及解决方案请详见表1。 表1 NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过 AI 模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 构建科学计算大模型训练数据要求 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求 模型类别
气象类数据集格式要求 ModelArts Studio大模型开发平台支持导入气象类数据集,该数据集当前包括海洋气象数据。 海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域
使用API调用科学计算大模型 使用API调用科学计算大模型步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径
使用“能力调测”调用科学计算大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建科学计算大模型部署任务。 科学计算大模型支持全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球海洋生态、全球海浪高度预测能力
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算
配置插件 配置插件的步骤如下: 在“高级配置 > 插件”,单击“添加”。 图1 配置插件 在“添加插件”窗口,选择预置插件或个人插件,单击进行添加,最后单击“确定”。若想创建插件可单击右上角“创建插件”,创建插件的步骤请参见创建插件。 图2 添加插件 添加插件后,可在“高级配置”中查看当前已添加的插件
科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用文本对话(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。 以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [
手工编排Agent应用流程 手工编排Agent应用流程步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“应用”页签,单击右上角“创建应用”。 您也可以鼠标单击已有应用右上角的
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,用户训练模型时如果使用较特殊的数据集,ModelArts Studio大模型开发平台支持导入用户自定义的数据集。 例如,在训练CV类算法(如图片分类、图片分割、图片检测等任务)时,用户需使用“其他”类型的数据集。 其他类数据集可直接执行发布操作
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息头
手工编排Agent应用 手工编排Agent应用流程 配置Prompt builder 配置插件 配置知识 配置开场白和推荐问题 调试Agent应用 父主题: 开发盘古大模型Agent应用