检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题: 服务部署
开发环境细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:
上报就不计费,各个服务开始计费的状态如下。 微调大师:“训练中” AI应用:“运行中” 在线推理服务:“运行中” 计费规则 资源整点扣费,按需计费。 计费的最小单位为秒,话单上报后的每一小时对用户账号进行一次扣费。如果使用过程中暂停、终止了消耗资源的AI Gallery工具链服务
开发者的新特性需求。基于服务演进,ModelArts团队已于2021年上线新版训练,力求解决存在的历史问题,并为新特性提供高性能、高易用、可扩展、可演进的底座,给用户提供更好的AI训练体验,打造易用、高效的AI平台。 下线旧版训练管理对现有用户的使用是否有影响? 正在使用的训练作
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取
IsADirectoryError(21, 'Is a directory'). update products failed! 原因分析 用户代码中设置的目标路径(local_path)有误。 处理方法 需要将local_path路径设置为文件夹且后缀必须以“/”结尾。 父主题: API/SDK
自动学习为什么训练失败? 当自动学习项目训练失败时,请根据如下步骤排除问题。 进入当前账号的费用中心,检查是否欠费。 是,建议您参考华为云账户充值,为您的账号充值。 否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊字符
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
方式三:通过Grafana查看所有监控指标 当AOM的监控模板不能满足用户诉求时,用户可以使用Grafana可视化工具来查看与分析监控指标。Grafana支持灵活而又复杂多样的监控视图和模板,为用户提供基于网页仪表面板的可视化监控效果,使用户更加直观地查看到实时资源使用情况。 将Grafana的数据源配置完成后,
户组页面查找待授权的用户组名称,在右侧的操作列单击“授权”,勾选步骤2创建的自定义策略,单击“下一步”,选择授权范围方案,单击“确定”。 此时,该用户组下的所有用户均有权限通过Cloud Shell登录运行中的训练作业容器。 如果没有用户组,也可以创建一个新的用户组,并通过“用户
镜像过大Push任务一直在运行,或实例节点有问题。 解决方法 以对应租户的华为云账号登录SWR服务,查看镜像是否已经Push成功。 如果Push成功,请重新注册镜像。 如果未Push成功,联系SRE查看对应实例的节点是否有问题。 父主题: 自定义镜像故障
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
在ModelArts控制台总览页,支持查看生产概况、资源占用情况、训练作业资源利用情况。您可以单击生产概况的链接、资源池名称、训练作业,跳转到对应界面查看更多详情。 图1 总览页查看监控信息 在总览页查看全部事件时,如果顶部事件总数和底部的“总条数”数量不一致,请刷新重试。 在各模块资源监控页签查看ModelArts监控指标
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
object API已授权的APP的基本信息。 表5 AppAuthApiAuthInfo 参数 参数类型 描述 api_id String API编号。 authed_apps Array of ApigAppDetailInfo objects API已授权的APP的基本信息。 表6 ApigAppDetailInfo
String 操作路径,符合标准的Json PATCH格式,代表以服务详情的Json返回体为基准,想要执行替换的值的目标路径(Json PATH)。当前支持且仅支持对模型相关所有参数的替换更新,因此前缀固定为“/config/”。例如,当期望更新第一个模型中的实例数量,则路径为“/co
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: