检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?so
PluginTemplateMetadata object 插件模板的metadata信息。 spec PluginTemplateSpec object 插件模板的规格信息。 表3 PluginTemplateMetadata 参数 参数类型 描述 name String 插件模板的名称。 表4 PluginTemplateSpec
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境
Workflow工作流配置参数的名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 type 否 String 参数的类型,枚举值如下: str:字符串 int:整型 bool:布尔类型 float:浮点型 description 否 String
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。 本案例中,若用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境
工作空间名称。长度限制为4-64字符,支持中文、大小写字母、数字、中划线和下划线。同时'default'为系统预留的默认工作空间名称,用户无法自己创建名为'default'的工作空间。 description 否 String 工作空间描述,默认为空。长度限制为0-256字符。 表4 grants
息头中X-Subject-Token的值)。 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述 total_count Integer 不分页的情况下符合查询条件的总集群数量。 count Integer 当前查询结果的集群数量,不设置offset、lim
是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
ter分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析 requirements.txt的Unidecode名字写错了,应该把U改成小写,所以导致训练作业的环境没有装上unidecode模块。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
if_then_steps表示的是当Condition比较的结果为true时允许执行的节点列表,存储的是节点名称;此时else_then_steps中的step跳过不执行。 else_then_step表示的是当Condition比较的结果为false时允许执行的节点列表,存储的是节点名称;此时
存在创建并使用的工作空间,以实际取值为准。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数
指定每个设备的训练批次大小 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。