检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在代码中打印出numpy的版本,查看是否为1.18.5版本,若非该版本号则在代码开始处执行: import os os.system('pip install numpy==1.18.5') 如果依旧有报错情况,将以上代码修改为: import os os.system('pip install
将文件夹压缩成压缩包,上传方式与大文件相同。将文件上传至Notebook后, 可在Terminal中解压压缩包。 unzip xxx.zip #在xxx.zip压缩包所在路径直接解压 解压命令的更多使用说明可以在主流搜索引擎中查找Linux解压命令操作。 父主题: 文件上传下载
Workflow工作流配置参数的名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 type 否 String 参数的类型,枚举值如下: str:字符串 int:整型 bool:布尔类型 float:浮点型 description 否 String
Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend:
emo。 ip 否 String 用户GaussDB(DWS)集群的IP地址。 port 否 String 用户GaussDB(DWS)集群的端口。 queue_name 否 String 表格数据集,DLI队列名。 subnet_id 否 String MRS集群的子网ID。 table_name
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
01”文件夹是否已创建成功。更多MoXing的常用操作请参见MoXing常用操作的样例代码。 图3 运行示例 复制数据到OBS 在Notebook的在JupyterLab的服务界面,将文件yolov8_train_ascend.zip,复制到已有的OBS桶中,示例代码如下。 import
资源选择推荐 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适存储及训练方案可提升模型训练效率与资源性价比。ModelArts支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。针对第一次使用ModelArts的用户,本文提供端到端案例指导,帮助您快
C:\Users\xxx>python --version Python *.*.* 执行命令pip --version,确认Python通用包管理工具pip已经存在。 C:\Users\xxx>pip --version pip **.*.* from c:\users\xxx\appdata\loc
如果代码中涉及文件绝对路径,由于Notebook调试与训练作业环境不同,可能会导致文件绝对路径不一致,需要修改代码内容。推荐使用软链接的方式解决该问题,用户只需提前建立好软链接,代码中的地址可保持不变。 新建软链接: # ln -s 源目录/文件 目标目录/文件 # 例如 ln -s /mnt/sfs_turbo/data/coco
objects 节点的输入项。 outputs 否 Array of JobOutput objects 节点的输出项。 created_at 否 String 节点的创建时间。 title 否 String 工作流节点标题。 description 否 String 节点的描述信息。 properties
在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。 例如,“代码目录”对应的OBS路径下,包含模型文件,同时还存在“pip-requirements.txt”文件。“代码目录”的结构如下所示: |---模型启动文件所在OBS文件夹
update_job_configs(description="update job description") 方式二:根据创建训练作业生成的训练作业对象更新。 job_instance.update_job_configs(description="update job description fourth")
新版训练支持使用“自定义算法”、“我的算法”、“我的订阅”方式来创建训练作业。 新版训练的创建方式有了更明确的类别划分,选择方式和旧版训练存在区别。 旧版中使用“算法管理”中已保存的算法创建训练作业的用户,可以在新版训练中使用“我的算法”创建训练作业。 旧版中使用“算法管理”中订阅的算法创建训练作业的用户,可
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
objects 节点的输入项。 outputs 否 Array of JobOutput objects 节点的输出项。 created_at 否 String 节点的创建时间。 title 否 String 工作流节点标题。 description 否 String 节点的描述信息。 properties
是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 mask_source 否 表示图像分割保存的mask路径。 object
如,图像分类、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠性。而事实上,不能一次性将
4、需要开启profiling功能进行性能数据采集和解析请参考录制Profiling 5、训练过程中报"ModuleNotFoundError: No module named 'multipart'"关键字异常,可更新python-multipart为0.0.12版本,具体请参考问题5:No