检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下面从大数据集需求、硬件需求、过拟合、超参数优化、不透明性、缺少灵活性这六个方面来简要说明深度学习系统所面临的挑战。 4.1.1 大数据集需求在深度学习系统中,人们往往需要大型的数据集去训练一个有效的深度学习模型。一般来说,越多的数据就越有可能使深度学习模型变得更强大。例如,在语音识别领域中,为了学习一种语言
前馈网络可以被视为一种高效的非线性函数近似器,它以使用梯度下降来最小化函数近似误差为基础。从这个角度来看,现代前馈网络是一般函数近似任务的几个世纪进步的结晶。处于反向传播算法底层的链式法则是 17 世纪发明的 (Leibniz, 1676; L’Hôpital, 1696)。微积
Dropout强大的大部分原因来自施加到隐藏单元的掩码噪声,了解这要的。这可以看作是对输入内容的信息高度智能化、自适应破坏的一种形式,而不是对输入原始值的破坏。例如,如果模型学得通过鼻检测脸的隐藏单元 hi,那么丢失 hi 对应于擦除图像中有鼻子的信息。模型必须学习另一种 hi,
训练标签 y 相关的训练样本 x 变成了类别 y 的模版。当测试点 x′ 到 x 的欧几里得距离很小时,对应的高斯核很大,表明 x′ 和模版 x 非常相似。该模型进而会赋予相对应的训练标签 y 较大的权重。总的来说,预测将会组合很多这种通过训练样本相似性加权的训练标签。支持向量机
使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收
每个 maxout 单元现在由 k 个权重向量来参数化,而不仅仅是一个,所以 maxout单元通常比整流线性单元需要更多的正则化。如果训练集很大并且每个单元的块数保持很低的话,它们可以在没有正则化的情况下工作得不错 (Cai et al., 2013)。maxout 单元还有一些
频率派的视角是真实参数 θ 是未知的定值,而点估计θˆ 是考虑数据集上函数(可以看作是随机的)的随机变量。 贝叶斯统计的视角完全不同。贝叶斯用概率反映知识状态的确定性程度。数据集能够直接观测到,因此不是随机的。另一方面,真实参数 θ 是未知或不确定的,因此可以表示成随机变量。
当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来
有时我们会关注函数估计(或函数近似)。这时我们试图从输入向量x 预测变量 y。我们假设有一个函数 f(x) 表示 y 和 x 之间的近似关系。例如,我们可能假设 y = f(x) + ϵ,其中 ϵ 是 y 中未能从 x 预测的一部分。在函数估计中,我们感兴趣的是用模型估计去近似 f,或者估计
Goodfellow et al. (2014b) 表明,这些对抗样本的主要原因之一是过度线性。神经网络主要是基于线性块构建的。因此在一些实验中,它们实现的整体函数被证明是高度线性的。这些线性函数很容易优化。不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。如果我们用
神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate
继续线性回归模型,这里先说`随机梯度下降法`。 先考虑一个简单的模型,没有截距,只有一个自变量: y=xw 当观测点为(x=0.5,y=0.8),w=3时,残差平方和是 ```python x,y=0.5,0.8 w=3 rss=(y-x*w)**2/2 print(rss) #0
解决欠拟合问题的方法比较简单,增加模型复杂度就可以了。常见的方法是增加隐藏层的数量或者增加隐藏层的节点数,或者二者同时增加。如果训练误差持续下降,接近于0。而测试误差在下降后变得平稳,甚至略有上升。训练误差和测试误差的差距较大。这就是典型的过拟合情况。在建立神经网络模型的初始阶段
关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外
L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,
正则化项当然可以通过适当的超参数缩放,并且对于大多数神经网络,我们需要对许多输出求和 (此处为描述简单,f(x) 为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al.
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1
促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对
Bagging(bootstrap aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。