已找到以下 10000 条记录
  • 华为云深度学习

    集群和0.8的线性加速比,原先一个月的模型训练时间,现在1小时搞定机会难得,小伙伴们还不抓紧来体验,数量有限,先到先得哦!!点击访问华为云深度学习官网

    作者: 斑馬斑馬
    331
    0
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 深度学习笔记之应用

          深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。深度学习的引入 (Dahl et al., 2010; Deng et al.,2010b; Seide et al., 2011; Hinton et al

    作者: 小强鼓掌
    624
    0
  • Numpy实现深度学习Model

    misc import bar_widgets class NeuralNetwork(): """Neural Network. Deep Learning base model. Parameters: ----------- optimizer:

    作者: AI浩
    发表时间: 2021-12-22 14:22:13
    713
    0
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    953
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    348
    1
  • 深度学习框架MindSpore介绍

    架构可以让用户聚焦模型算法数学原生表达。资深的深度学习开发者都体会过手动求解的过程,不仅求导过程复杂,结果还很容易出错。所以现有深度学习框架,都有自动微分的特性,帮助开发者利用自动微分技术实现自动求导,解决这个复杂、关键的过程。深度学习框架的自动微分技术根据实现原理的不同,分为以

    作者: 运气男孩
    887
    2
  • 深度学习笔记之贡献

    2014) 等。我们期待深度学习未来能够出现在越来越多的科学领域中。      总之,深度学习是机器学习的一种方法。在过去几十年的发展中,它大量借鉴了我们关于人脑、统计学和应用数学的知识。近年来,得益于更强大的计算机、更大的数据集和能够训练更深网络的技术,深度学习的普及性和实用性都

    作者: 小强鼓掌
    856
    2
  • 深度学习训练过程

    深度学习训练过程语音2006年,Hinton提出了在非监督数据上建立多层神经网络的一个有效方法,具体分为两步:首先逐层构建单层神经元,这样每次都是训练一个单层网络;当所有层训练完后,使用wake-sleep算法进行调优。将除最顶层的其他层间的权重变为双向的,这样最顶层仍然是一个单

    作者: QGS
    1054
    3
  • 深度学习之经验E

    法 (unsupervised learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。

    作者: 小强鼓掌
    1164
    3
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    49
    2
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    423
    0
  • Out-of-Distribution Robustness in Deep Learning

    本文总结了SOTA的OOD检测论文(截止到2020/4/10):目前SOTA的OOD检测算法分成两大类:1,Deep generative model(包含基于flow的方法Glow,PixelCNN等)都是为了学习得到 p(x) 所以往往不需要label信息,之前的方法总用likelihood去作为评价out或in

    作者: 荷籽
    发表时间: 2020-04-10 15:04:03
    10829
    0
  • 深度学习的特点

    深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    594
    2
  • 深度学习之稀疏激活

    随机选择参数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物

    作者: 小强鼓掌
    935
    1
  • 深度学习之稀疏激活

    随机选择参数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物

    作者: 小强鼓掌
    653
    1
  • 深度学习笔记之特性

            深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千

    作者: 小强鼓掌
    930
    1
  • 深度学习入门》笔记 - 21

    数的梯度消失问题。tanh函数也有梯度消失问题。ReLU(Rectified Linear Unit)函数出现和流行的时间都比较晚,但却是深度学习常用的激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负的输入值都变换成0,所有非负的输入值,函数值都等

    作者: 黄生
    29
    1
  • 坚持每天都去七层别墅看大师

    坚持每天都去七层别墅看大师!不仅自己要去,还要号召大家一起去!

    作者: bzhtoot
    729
    10
  • 深度学习的现实应用《深度学习与Mindspore实践》今天你读书了吗?

    换成文本的技术。从早期的基于模板的方法到严格的统计模型,再到如今的深度模型,语音识别技术已经经历了几代的更迭。 图像识别图像识别是深度学习最成功的应用之一。深度学习在计算机视觉领域的突破发生在2012年,Hinton教授的研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet

    作者: QGS
    1026
    2