检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
NLP大模型训练常见报错与解决方案 NLP大模型训练常见报错及解决方案请详见表1。 表1 NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提
科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题: 大模型概念类问题
手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景
创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 标注数据集 评估数据集 发布数据集 数据工程常见报错与解决方案
创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作
满足不同业务需求:ModelArts Studio大模型开发平台支持不同类型的数据标注,包括文本、图片、视频等,可以针对不同的数据和业务场景提供定制化的标注方案,满足多样化的需求。 增强模型的准确性与鲁棒性:准确的标注数据能够帮助模型更好地学习数据的潜在模式和规律,进而提高模型的性能、准确性和鲁棒性。
xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级
0.3 部署推理服务后,可以采用人工评测的方案来评估模型效果。以下列出该场景中可能遇到的常见问题,评测过程中如出现这些问题,可参考相应的解决方案: 问题一:问答场景问题,针对文档库中的内容可以回答的问题,模型的最终回答不符合预期。 解决方案:首先进行问题定位,确定是未检索到相关文档
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作
和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 应用开发工具链
) 0 部署推理服务后,可以采用人工评测的方案来评估模型效果。若评测过程中出现如下问题,可以参考解决方案进行优化: 问题一:模型答案没有按照Prompt要求回答。例如,要求文案在300字以内,但是模型回答字数仍然超出300字。 解决方案:在数据质量要求中提到要求训练数据的输出(t
使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域:
洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 在ModelArts Studio开发平台中,数据工程功能提供了完整的解决方案,用于高效构建和管理数据集,其操作流程见图1、表1。这种全面的数据准备机制,确保了数据质量的可靠性,为各类模型开发奠定了坚实的基础。 图1
话题重复度控制(presence_penalty) 0 部署推理服务后,可以采用人工评测的方案来评估模型效果。如下提供了本场景可能存在的常见问题,若在评测过程中出现如下问题,可以参考解决: 问题一:JSON字段缺失、JSON字段或值错误。 解决方案:对于这几种情况,需要在微调数据中增大该缺失字段的数据比例,同
应用提供智能支持,提升模型在实际场景中的推理性能。 SDK文档 盘古推理SDK简介 使用推理SDK 常见问题 了解更多常见问题、案例和解决方案 热门案例 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常?