检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? ModelArts平台是否支持多模型导入? 在ModelArts中导入模型对于镜像大小有什么限制? ModelArts在线服务和批量服务有什么区别? ModelArts在线服务和边缘服务有什么区别? 在ModelA
托管数据集到AI Gallery AI Gallery上每个资产的文件都会存储在线上的AI Gallery存储库(简称AI Gallery仓库)里面。每一个数据集实例视作一个资产仓库,数据集实例与资产仓库之间是一一对应的关系。例如,模型名称为“Test”,则AI Gallery仓
将AI Gallery中的模型部署为AI应用 AI Gallery支持将模型部署为AI应用,在线共享给其他用户使用。 前提条件 选择的模型必须是支持部署为AI应用的模型,否则模型详情页没有“部署 > AI应用”选项。 部署AI应用 登录AI Gallery。 单击“模型”进入模型列表。
否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当托管的是自定义镜像时,上传的模型文件要满足自定义镜像规范,否则该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 当文件状态变成“上传成功”表示数据文件成功上传至AI
为什么项目删除完了,仍然还在计费? 如果ModelArts的自动学习项目、Notebook实例、训练作业或在线服务,都已经处于停止状态,即总览页面没看到收费项目,仍然发现账号还在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS
Gallery在线推理服务部署模型。 如果使用自定义镜像进行训练,操作步骤可以参考使用AI Gallery微调大师训练模型,其中“训练任务类型”默认选择“自定义”,且不支持修改。 如果使用自定义镜像进行部署推理服务,操作步骤可以参考使用AI Gallery在线推理服务部署模型,
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 图5 访问在线服务 父主题: Standard推理部署
存需求增多。 处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题:
高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IOPS的需求,用于作为高性能存储,比如工业设计、能源勘探这些。
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI Gallery。 模型基础设置里的“任务类型”选择除“文本问答”和“文本生成”之外的类型。
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 父主题: 制作自定义镜像用于推理
单击新建的模型名称左侧的小三角形,展开模型的版本列表。在操作列单击“部署 > 在线服务”,跳转至在线服务的部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:按照界面提示规则自定义一个在线服务的名称,也可以使用默认值。 “资源池”:选择“公共资源池”。 “模型来源”和
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
2a1 -j 8 编译时需要加上MPI=1的参数,否则无法进行多机之间的测试。 MPI路径版本需要匹配,可以通过“ls /usr/mpi/gcc/”查看openmpi的具体版本。 nccl-test测试。 单机测试: /root/nccl-tests/build/all_reduce_perf
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count: