检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI开发平台ModelArts ModelArts CommonOperations ModelArts Dependency Access 模型管理/在线服务/批量服务/边缘服务/边缘部署专属资源池 对象存储服务OBS OBS Administrator 云监控服务CES CES ReadOnlyAccess
Tenant Administrator 可选 CES云监控 授予子账号使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子账号使用SMN消息服务的
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 Standard AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境
3-cudnn8-ubuntu18.04:v1 . 调试镜像 建议把调试过程中的修改点通过Dockerfile固化到容器构建正式流程,并重新测试。 确认对应的脚本、代码、流程在linux服务器上运行正常。 如果在linux服务器上运行就有问题,那么先调通以后再做容器镜像。 确认打入
"desc_act": false } 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考启动在线推理服务。 python -m vllm.entrypoints.openai.api_server --model <your_model>
06:00完成了数据校验,10:06:00-10:12:00完成了图像分类,11:30:00完成了服务部署,并在12:00:00停止运行在线服务。同时,使用公共资源池运行实例,模型训练时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU:
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
能否提供实际模型、网络验证的代码和数据等信息 提供实际模型、网络验证的代码和数据。 提供与业务类型类似的开源模型,例如GPT3 10B/13B。 提供测试模型以及对应的Demo代码路径(开源或共享)。 可以提前的完成POC评估,例如框架、算子支持度,以及可能的一些性能指标。 - 如果是AIGC场景的业务例如Stable
Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Notebook”,单击“创建”,在创建Notebook页面,资源池规格只能选择专属资源池。 使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
请求Body参数 参数 是否必选 参数类型 描述 schedule 否 Array of Schedule objects 服务调度配置,仅在线服务可配置,默认不使用,服务长期运行。 description 否 String 服务描述,不超过100个字符,不能包含字符有!<>=&"'。不设置此参数表示不更新。
选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务 调用在线服务进行大模型推理,请求路径填写/v2/models/en