检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2a1 -j 8 编译时需要加上MPI=1的参数,否则无法进行多机之间的测试。 MPI路径版本需要匹配,可以通过“ls /usr/mpi/gcc/”查看openmpi的具体版本。 nccl-test测试。 单机测试: /root/nccl-tests/build/all_reduce_perf
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
规则。 综上,在线服务的运行费用 = 计算资源费用(3.50 元) + 存储费用 示例:使用专属资源池。计费项:存储费用 假设用户于2023年4月1日10:00:00创建了一个使用专属资源池的在线服务,并在11:00:00停止运行。按照存储费用结算,那么运行这个在线服务的费用计算过程如下:
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶
D不匹配的情况。 如果上述方法还出现了错误,可以去notebook里面调试打印CUDA_VISIBLE_DEVICES变量,或者用以下代码测试,查看结果是否返回的是True。 import torch torch.cuda.is_available() 建议与总结 在创建训练作业
infer_type 是 String 推理方式,取值为real-time/batch/edge。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
其中ServiceStep节点包含两个输入,一个是模型列表对象,另一个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。
--quantization-param-path kv_cache_scales.json #输入2. 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 per-tensor+per-head静态量化场景
单击操作列“部署>在线服务”,将模型部署为在线服务。 图6 部署在线服务 在“部署”页面,参考下图填写参数,然后根据界面提示完成在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经部
表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。 cpu_memory_total Integer 总内存,单位MB。 gpu_usage Float
--quantization-param-path kv_cache_scales.json #输入2. 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 per-tensor+per-head静态量化场景
查看日志、错误等,并进行代码、环境变量的修正。 预置脚本测试整体流程 一般使用run.sh封装训练外的文件复制工作(数据、代码:OBS-->容器,输出结果:容器-->OBS),run.sh的构建方法参考run.sh脚本测试ModelArts训练整体流程。 如果预置脚本调用结果不符
置、上传对象、获取对象、删除对象、获取对象ACL等对象基本操作权限。 配置IAM权限 配置ModelArts委托权限 配置SWR组织权限 测试用户权限 父主题: 基本配置
标 训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。 父主题: ModelArts
服务当前运行所用配置的更新时间,距“1970.1.1 0:0:0 UTC”的毫秒数。 debug_url String 在线服务在线调试地址,只有当模型支持在线调试且只有一个实例的时候会存在。 due_time Number 在线服务自动停止时间,距“1970.1.1 0:0:0 UTC”的毫秒数,未配置自动停止则不返回。