检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发布数据集到AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 数据集资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在“我的资产 > 数据集”下,选择未发布的数
在Linux上安装配置Grafana 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本地存储100G),具体操作请参考《弹性云服务器快速入门》。 购买弹性公网IP
在Notebook上安装配置Grafana 前提条件 已创建CPU或GPU类型的Notebook实例,并处于运行中。 打开Terminal。 操作步骤 在Terminal中依次执行以下命令,下载并安装Grafana。 mkdir -p /home/ma-user/work/grf
上传文件至JupyterLab 上传本地文件至JupyterLab 克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在VS Code中上传下载文件 在VS Code中上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS上传到云上开发环境。 操作步骤 上传数据至OBS。具体操作请参见上传文件至OBS桶。 或者在本地VS
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2
子用户使用专属资源池创建训练作业无法选择已有的SFS Turbo 由于权限不足,导致子用户无法看到已有的SFS Turbo,请为子用户所在用户组添加SFS FullAccess 、SFS Turbo FullAccess权限。 父主题: 功能咨询
部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,
训练好的模型是否可以下载或迁移到其他账号?如何获取下载路径? 通过训练作业训练好的模型可以下载,然后将下载的模型上传存储至其他账号对应区域的OBS中。 获取模型下载路径 登录ModelArts管理控制台,在左侧导航栏中选择“模型训练 > 训练作业”,进入“训练作业”列表。 在训练
LLM/AIGC/数字人基于Server适配NPU的训练推理指导 ModelArts提供了丰富的关于Server使用NPU进行训练推理的案例指导,涵盖了LLM大语言模型、AIGC文生图、数字人等主流应用场景。您可单击链接,即可跳转至相应文档查看详细指导。 LLM大语言模型 主流开
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。 本案例中,若用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等
附录:大模型推理standard常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
准备镜像 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
在ModelArts Standard上运行GPU多机多卡训练任务 操作流程 准备工作: 购买服务资源(VPC/SFS/OBS/SWR/ECS) 配置权限 创建专属资源池(打通VPC) ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具
Controlnet训练 使用文本提示词可以生成一副精美的画作,然而无论再怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet
准备镜像 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
附录:Standard大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传