检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip
Step4 测试用户权限 由于4中的权限需要等待15-30分钟生效,建议在配置完成后,等待30分钟,再执行如下验证操作。 使用用户组02中任意一个子账号登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包
run.sh脚本测试ModelArts训练整体流程 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用
SD WebUI推理性能测试 以下性能测试数据仅供参考。 开启Flash Attention 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1*
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 您可以直接使用benchmark
GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用
Cluster资源池如何进行NCCl Test? ModelArts提供AI诊断功能,用户可以通过NCCl Test,测试节点GPU状态,并且测试多个节点间的通信速度。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器,
性能调优 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输入进行推理
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置