检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
本文介绍了MRS服务提供的SDK语言版本,列举了最新版本SDK的获取地址。 在线生成SDK代码 API Explorer能根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例”页签查看对应编程语言类型的SDK代码,如图1所示。
SQL接口介绍 Impala SQL提供对HiveQL的高度兼容性,Impala使用SQL作为其查询语言,为了保护用户在技能开发和查询设计上的投资,Impala提供了与Hive查询语言(HiveQL)的高度兼容性。 由于Impala使用与Hive相同的元数据存储来记录有关表结构和属
Spark开发接口简介 Spark支持使用Scala、Java和Python语言进行程序开发,由于Spark本身是由Scala语言开发出来的,且Scala语言具有简洁易懂的特性,推荐用户使用Scala语言进行Spark应用程序开发。 按不同的语言分类,Spark的API接口如表1所示。 表1 Spark
件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(化简)函数,用来保证所有映射的键值对共享相同的键组。
从零开始使用Spark SQL Spark提供类似SQL的Spark SQL语言操作结构化数据,本章节提供从零开始使用Spark SQL,创建一个名称为src_data的表,然后在src_data表中每行写入一条数据,最后将数据存储在“mrs_20160907”集群中。再使用SQ
Kafka应用开发规则 调用Kafka API(AdminZkClient.createTopic)创建Topic 对于Java开发语言,正确示例: import kafka.zk.AdminZkClient; import kafka.zk.KafkaZkClient; import
在Linux环境中调测Spark应用 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。
PyFlink样例程序开发思路 假定业务平台需要提交Flink任务到MRS集群,业务平台主要使用的语言是Python,提供Python读写Kafka作业和Python提交SQL作业的样例。 本场景适用于MRS 3.3.0及以后的集群版本。 父主题: PyFlink样例程序
PyFlink样例程序开发思路 假定业务平台需要提交Flink任务到MRS集群,业务平台主要使用的语言是Python,提供Python读写Kafka作业和Python提交SQL作业的样例。 本场景适用于MRS 3.3.0及以后的集群版本。 父主题: PyFlink样例程序
在Linux环境中编包并运行Spark程序 操作场景 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。
在Linux环境中编包并运行Spark程序 操作场景 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。
在Linux环境中调测Spark应用 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。
编包并运行Spark应用 操作场景 在程序代码完成开发后,您可以将打包好的jar包上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 Spark应用程序只支持在Linux环境下运行,不支持在Windows环境下运行。
在“New Project”页面,选择“Scala”开发环境,并选择“Scala Module”,然后单击“Next”。 如果您需要新建Java语言的工程,选择对应参数即可。 图2 选择开发环境 在工程信息页面,填写工程名称和存放路径,设置JDK版本和Scala SDK,然后单击“Finish”完成工程创建。
ontext.stop()。 利用Java语言开发时,应用程序结束之前必须调用JavaSparkContext.stop()。 利用Scala语言开发时,应用程序结束之前必须调用SparkContext.stop()。 以Scala语言开发应用程序为例,分别介绍下正确示例与错误示例。
创建工程 在“New Project”页面,选择“Scala”开发环境,并选择“IDEA”,然后单击“Next”。 如果您需要新建Java语言的工程,选择对应参数即可。 图2 选择开发环境 在工程信息页面,填写工程名称和存放路径,设置JDK版本、Scala SDK版本,然后单击“Finish”完成工程创建。
创建工程 在“New Project”页面,选择“Scala”开发环境,并选择“IDEA”,然后单击“Next”。 如果您需要新建Java语言的工程,选择对应参数即可。 图2 选择开发环境 在工程信息页面,填写工程名称和存放路径,设置JDK版本、Scala SDK版本,然后单击“Finish”完成工程创建。
创建工程 在“New Project”页面,选择“Scala”开发环境,并选择“IDEA”,然后单击“Next”。 如果您需要新建Java语言的工程,选择对应参数即可。 图2 选择开发环境 在工程信息页面,填写工程名称和存放路径,设置JDK版本、Scala SDK版本,然后单击“Finish”完成工程创建。