检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
info 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户token。 响应参数
软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见软件包结构说明。
要添加uid为1000的用户ma-user和gid为100的用户组ma-group。如果基础镜像中uid 1000或者gid 100已经被其他用户和用户组占用,需要将其对应的用户和用户组删除。如下Dockerfile文件已添加指定的用户和用户组,您直接使用即可。 用户只需要设置u
Standard使用run.sh脚本实现OBS和训练容器间的数据传输 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
击操作列的“打通VPC”。 图2 打通VPC 在打通VPC弹框中,打开“打通VPC”开关,在下拉框中选择提前创建好的VPC和子网。 需要打通的对端网络不能和当前网段重叠。 创建Modelarts专属资源池。 在控制台左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”。
使用GPU A系列裸金属服务器有哪些注意事项? 使用华为云A系列裸金属服务器时有如下注意事项: nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanager方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。
upgrade numpy to >= xxx to use this pandas version” 问题现象 在安装其他包的时候,有依赖冲突,对numpy库有其他要求,但是发现numpy卸载不了。出现如下类似错误: your numpy version is 1.14.5.Please
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
训练场景和方案介绍 Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展SDXL和SD1.5模
ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources
训练场景和方案介绍 Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展SDXL和SD1.5模
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安
创建生产训练作业 模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts St
置”、“输出数据目录位置”和“描述”。 您也可以通过单击描述右侧的,对描述信息进行编辑。 从“输出数据目录位置”参数右侧获取详细OBS地址,前往此OBS目录,可以获取批量服务预测结果,包括预测结果文件和模型预测结果。 如果预测成功,目录下有预测结果文件和模型预测结果;如果预测失败,目录下只有预测结果文件。
进入在线服务详情,查看Key值和Value值。 Key值固定为X-Apig-AppCode,Value值为APP认证的app_code值,在服务调用指南tab的APP认证API处展开,进行AppCode管理设置。 图13 获取Key值和Value值 将在ModHeader插件中添加Key值和Value值。
用户可以直接操作资源池中的节点和k8s集群。 适用于已经自建AI开发平台,仅有算力需求的用户。要求用户具备k8s基础知识和技能。 ModelArts Edge 为客户提供了统一边缘部署和管理能力,支持统一纳管异构边缘设备,提供模型部署、Al应用和节点管理、资源池与负载均衡、应用
lArts使用委托授权的临时凭证访问和操作用户资源,协助用户自动化一些繁琐和耗时的操作。同时,委托凭证会同步到用户的作业中(Notebook实例和训练作业),用户在作业中可以使用委托凭证自行访问自己的资源。 在ModelArts服务中委托授权有两种方式: 1、一键式委托授权 Mo