检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取账号名和ID和获取用户名和用户ID。 已准备好PyTorch框架的训练代码,例如将启动文件“test-pytorch
L”时才会生效。 auth_type 否 String 授权类型。可选值有PUBLIC、PRIVATE、INTERNAL。默认值为PUBLIC。 PUBLIC:租户内部公开访问。 PRIVATE:仅创建者和主账号可访问。 INTERNAL:创建者、主账号、指定IAM子账号可访问,需要与grants参数配合使用。
关闭详细日志命令: unset DETAIL_TIME_LOG 配置后重启推理服务生效。 Step7 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 附录:基于vLLM(v0.3.2)不同模型推理支持的max-model-len长度说明 基于vLLM(v0
的数据增强模型的能力和性能。允许模型逐步适应新的任务和数据,避免过拟合和欠拟合问题,进一步提高模型的泛化能力。 调优后模型名称 设置调优后产生的新模型的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、下划线(_)、中划线(-)和半角句号(.)。 调优后模型权重存放路径
sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然后使用保存镜像功能。后续训练作业
etron官网进行查看,或者对于模型结构中的输入进行shape的打印,并明确输入的batch。 一般来说,推理时指定的inputShape和用户的业务及推理场景紧密相关,可以通过原始模型推理脚本或者网络模型进行判断。需要把Notebook中的模型下载到本地后,再放入netron官网中,查看其inputShape。
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的
为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,并将生成的结果数据异步持久化到OBS对象存储中长期低成本保存。
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”
填写新的模型名称,后续运行会自动在该模型上新增版本") # 模型注册 model_step = wf.steps.ModelStep( name="model_step", title="模型注册", inputs=[wf.steps.ModelInpu
e_url和engine_id无需填写。 boot_file_url 是 String 训练作业的代码启动文件,需要在代码目录下,如:“/usr/app/boot.py”。应与app_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好
当前比对结果支持计算Cosine(余弦相似度)、MaxAbsErr(最大绝对误差)和MaxRelativeErr(最大相对误差)、One Thousandth Err Ratio(双千分之一)和Five Thousandths Err Ratio(双千分之五)这几种评价指标,工
} ] } 策略JSON格式字段介绍 策略结构 策略结构包括Version(策略版本号)和Statement(策略权限语句)两部分,其中Statement可以有多个,表示不同的授权项。 图1 策略结构 策略参数 下面介绍策略参数详细说明。了解策略参数后,您可以根据