检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(随机选择3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
举例。仅做测试验证,可以不需要通过创建deployment或者volcano job的方式,直接启动容器进行测试。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。
关闭详细日志命令: unset DETAIL_TIME_LOG 配置后重启推理服务生效。 Step6 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查: 健康检查端口是否可以正常工作 自定义镜像中配置了健康检查,需要在测试镜像时,同步测试健康检查接口是否可以正常工作,具体参考从0-1制作自定义镜像并创建AI应用中的本地验证镜像方法。 创建模型界面上配置的健康检查地址与实际配置的是否一致
然后再下线旧版本实例。 滚动升级(扩实例) 需额外消耗部分实例资源用于滚动升级,扩实例越大,升级速度越快。 滚动升级(缩实例) 通过腾出部分实例资源用于滚动升级,缩实例数越大,升级速度越快,造成业务中断可能性越大。 图1 推理服务升级流程 推理服务更新升级的具体操作请参见升级服务。
图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络原因。请先在浏览器中输入该远端文件的URL地址,测试该文件是否能下载。 图5 远端文件上传失败 父主题: 上传文件至JupyterLab
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
关闭详细日志命令: unset DETAIL_TIME_LOG 配置后重启推理服务生效。 Step7 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 附录:基于vLLM(v0.3.2)不同模型推理支持的max-model-len长度说明 基于vLLM(v0
来。参考代码如下: import log # 创建一个logger logger = log.getLogger(__name__) # 测试日志输出 logger.info("This is an info message") 父主题: 模型管理
具体功能 模型转换 固定shape转模型 动态shape传入指定档位转模型 支持fp32 支持AOE优化 benchmark 支持测试性能 支持精度测试 profiling 支持分析算子的profiling 环境准备 本工具支持x86和ARM的系统环境,使用前需要安装以下软件。 表2
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
3个数据作为测试集) user_id:用户的唯一不重复的ID值,必选。 excel_addr:待处理的excel文件的地址,必选。 dataset_name:处理后的数据集名称,必选。 proportion:测试集所占份数,范围[1,9],可选。 test_count:测试集的个数,范围[1,处理后数据集总长度
部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。
在线服务的“状态”变为“运行中”时,表示服务部署完成。 使用预测功能测试在线服务 模型部署为在线服务成功后,您可以在“预测”页签进行代码调试或添加文件测试。根据模型定义的输入请求不同(JSON文本或文件),测试服务包括如下两种方式: JSON文本预测:如当前部署服务的模型,其输入