检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测分析、声音分类等场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 费用说明:本案例使用过程中,从AI Gallery下载数据集免费,但是数据集存储在OBS桶中会收取少量费用,具体计费请参见OBS价格详情页。
一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视化和报表的形式把数据中的高价值信息
于昇腾推理。 精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore Lite模型进行基准测试,它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 模型自动调优工具
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
数据集文件有以下限制: 如果您使用2u8g规格,测试建议数据集文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。 如果您使用8u32g规格,测试建议数据集文件应小于100MB。当文件大小符合限
支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型 ModelArts自动学习,为资深级用户提供模板化开发能力 提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率
机场景下OpenAI服务的API接口启动在线推理服务方式。 推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。如果启动服
影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的训练过程;如果学习率过低,模型训练速度会变慢,甚至陷入局部最优。 batch size 影响训练速度,有时候也会影响模型精度。 micro batch size 影响流水线并行中设备的计算效率。 切分策略 包括DP(Data
”。管理员不做权限控制,此处默认使用普通用户委托即可。 勾选“我已经详细阅读并同意《 ModelArts服务声明 》”,单击“创建”。 测试管理员用户权限。 使用管理员用户登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。
Pod删除后,存储不会清理。 使用主机路径 OBS 适用于训练数据集的存储。 对象存储。常用OBS SDK进行样本数据下载。存储量大,但是离节点比较远,直接训练速度会比较慢,通常会先将数据拉取到本地cache,然后再进行训练任务。 静态挂载 动态挂载 SFS Turbo 适用于海量小文件业务场景。 提供posix协议的文件系统;
sh; sh ./scripts_modellink/dev_pipeline.sh 命令详解如下: <cfgs_yaml_file>:性能测试配置的yaml文件地址,如代码目录中performance_cfgs.yaml相对或绝对路径。 <model_name>:训练模型名,如qwen2-7b
预计时长4分钟左右。 图3 服务部署成功 步骤四:预测结果 在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范