检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 无 请求示例 同步数据集 POST https://{endpoint}/v2/{pr
1k_whole_map_val.txt。 下载完成后将上述3个文件数据上传至OBS桶中的imagenet21k_whole文件夹中。上传方法请参考上传数据和算法至OBS(首次使用时需要)。 父主题: 多机多卡
tasks/{task_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 请求参数 无 响应参数 无 请求示例 删除数据处理任务 DELETE
get_train_instance_types参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参考Session鉴权。 表2 成功响应参数说明 参数类型 描述 List 资源规格参数列表。 表3 调用训练接口失败响应参数 参数 类型
disabled.”如何解决? 问题现象 或 原因分析 Notebook实例重新启动后,公钥发生变化,OpenSSH核对公钥发出警告。 解决方法 在VS Code中使用命令方式进行远程连接时,增加参数"-o StrictHostKeyChecking=no" ssh -tt -o
std:exception” 原因分析 PyTorch1.0镜像中的libmkldnn软连接与原生torch的冲突,具体可参看文档。 处理方法 按照issues中的说明,应该是环境中的库冲突了,因此在启动脚本最开始之前,添加如下代码。 import os os.system("rm
APP编号。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
太小,无法满足应用部署,请增大内存规格。 运行中服务告警中出现该提示,可能代码有问题导致内存溢出或者业务使用量太大导致内存需求增多。 处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内
ubscription_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 subscription_id 是 String 工作流的消息订阅ID。
ersion_id}/stop 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 version_id 是 String 数据处理任务的版本ID。
登录容器镜像服务控制台,在“我的镜像>他人共享”页签下,查看用户B共享的镜像,单击镜像名称进入镜像详情。 按照“Pull/Push指南”页签提供的操作方法,将用户B共享的镜像Pull下来,即作为自有镜像。 进入ModelArts控制台,选择Pull下来的镜像进行镜像注册,注册成功后即可在Notebook界面使用此镜像。
参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status