检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
times 否 以相同的过滤条件查询的层数 Integer [1,10] 1 第一层的过滤条件是对初始节点的过滤,因此仅vertex_filter参数有效。 最后一层的点过滤条件也是对初始节点的过滤。 环路的长度范围是 3-10,因此过滤层数是 4-11 层。 表3 response_data
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
parameters参数说明 参数 是否必选 类型 说明 source 是 String 群体内包含的节点id,最多输入100000个节点。 temporal_vertex 否 Boolean 是否对节点执行群体演化,默认为false。 响应参数 表6 响应参数说明 参数 是否必选 类型 说明
度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运
objects 节点网络详情。 表5 overview参数说明 参数 类型 说明 ges_instance_name String 节点名称。 instance_id String 节点ID。 work_ip String 节点ip。 role String 节点角色。 cpu_usage
如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 区域和终端节点 当您通过API使用资源时,您必须指定其区域终端节点。有关区域和终端节点的更多信息,请参阅图引擎服务的地区和终端节点。 父主题: 其他问题
objects 节点网络详情。 表5 overview参数说明 参数 类型 说明 ges_instance_name String 节点名称。 instance_id String 节点ID。 work_ip String 节点ip。 role String 节点角色。 cpu_usage
算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点。 URI POST /ges/v1.0
紧密中心度算法(closeness) 功能介绍 根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected compone
子图查询(2.1.13) 功能介绍 查询输入的节点和它们之间所有边所构成的子图。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/subgraphs/action?action_id=query 表1 路径参数 参数 是否必选
构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要
动态拓展 指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述
根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
理,对k跳过程进行逐层过滤,列出满足过滤条件的第k跳节点或边。Filtered-query接口说明可参考Filtered-query API。 在图引擎编辑器左侧探索区的“路径拓展模块”内,填写以下参数: 路径起点:查询起始节点ID列表。有以下几种方法可以查询: 框选点的方式:画布上已经有点的情况下,
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_i
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边和百亿边规格的图暂不支持扩副本。 进行扩副本操作后,不支持扩容图操作。 如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 调试