检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
区域中期海洋智能预测模型选择建议: 科学计算大模型的中期海洋智能预测模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。区域中期海洋智能预测模型当前主要包括区域海洋要素模型,信息见表3。 表3 区域中期海洋智能预测模型信息 模型
管理科学计算大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古能力调测功能与盘古NLP大模型进行对话问答。您将学习如何通过调试模型超参数,实现智能化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型
配置开场白和推荐问题 配置开场白和推荐问题的步骤如下: 在“高级配置 > 开场白和推荐问题”中,可输入自定义开场白,也可单击“智能添加”。 在推荐问中单击“添加”,可增加推荐问数量。添加后可在右侧“预览调试”中查看相应效果。 最多可以添加3个推荐问。 图1 预览调试查看开场白与推荐问效果
调用盘古NLP大模型API实现文本对话 场景描述 此示例演示了如何调用盘古NLP大模型API实现文本对话功能。您将学习如何通过API接口发送请求,传递对话输入,并接收模型生成的智能回复。通过这一过程,您可以快速集成NLP对话功能,使应用具备自然流畅的交互能力。 准备工作 调用盘古NLP大模型API实现文本对话前,请确
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型(NLP大模型、科学计算大模型)在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。
断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts Studio大模型开发平台为用户提供了多种规格的NLP大模型
申请试用盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent应用开发,您将能够高效构建智能应用,充分释放盘古大模型的潜力,为业务创新提供强大支持。
些资产为用户提供了集中管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,包括数据格式、大小、配比比例等。同时,平台支持数据集的删除等管理操作,使用户能够统一管理数据集资源,以便在模型训
划分出多个工作空间,实现资产的精细化管理与有序调配,帮助用户高效地规划和分配任务,使团队协作更加高效。 此外,平台配备了完善的角色权限体系,覆盖超级管理员、管理员、模型开发工程师等多种角色。通过灵活的权限设置,每位用户能够在其对应的权限范围内安全高效地操作平台功能,从而最大程度保障数据的安全性与工作效率。
选择“科学计算大模型”。 场景 选择模型场景,分为“全球天气要素预测”、“全球中期降水预测”、“全球中期海洋智能预测”、“区域中期海洋智能预测”、“全球中期海洋生态智能预测”、“全球中期海量智能预测”。 全球中期天气要素预测模型可以选择1个或者多个模型进行部署。 如果使用全球中期降水预测模型
模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。 在应用阶
从而快速构建Agent。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 创建与管理工作流
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
注意输出参数中定义res变量 'res': "输入类型错误或者数字大小超出限制" } 单击“确定”,完成参数配置。 连接代码组件和其他组件。 父主题: 创建与管理工作流
数据工程 ModelArts Studio大模型开发平台提供了全面的数据工程功能,支持从数据源导入到数据质量控制的全流程管理。该模块涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts
成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。