检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。
进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。
s),超过该阈值的文件将使用并发下载模式进行分段下载。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者V
0-ofed-cuda11.2”。 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/tensorflow/code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/code”目录中,“code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
查询导入任务列表 查询数据集导入任务列表。 dataset.list_import_tasks() 示例代码 查询数据集导入任务列表 from modelarts.session import Session from modelarts.dataset import Dataset
图1 Host算子下发和Device算子执行 综上所述,性能优化的总体原则为:减少Host算子下发时间、减少Device算子执行时间。 训练代码迁移完成后,如存在性能不达标的问题,可参考下图所示流程进行优化。建议按照单卡、单机多卡、多机多卡的流程逐步做性能调优。 图2 性能调优总体思路
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户,
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。
ma3系列、Qwen2系列的NLP模型。 安装AscendModelNano AscendModelNano是FASP剪枝工具,适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/ModelNano目录下。 AscendModelNano工具需要安装,执行命令如下。
查询数据集版本列表 查询数据集的版本列表。 dataset.list_versions() 示例代码 查询数据集版本列表 from modelarts.session import Session from modelarts.dataset import Dataset session
查询导出任务列表 查询数据集导出任务列表。 dataset.list_export_tasks() 示例代码 查询数据集导出任务列表 from modelarts.session import Session from modelarts.dataset import Dataset
当需要从训练中断的位置接续训练,只需要加载checkpoint,并用checkpoint信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 ModelArts Standard中如何实现断点续训练 在ModelArts S
桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS
实际的容器名称。 docker exec -it ${container_name} bash 步骤二:上传代码、权重和数据集到容器中 安装插件代码包。将获取到的插件代码包AscendCloud-AIGC-6.3.912-xxx.zip文件上传到容器的/home/ma-user目录下,并解压。
克隆ModelArts Ascend代码库。 新建Terminal,执行下述命令将对应的repo克隆到Notebook实例。 git clone https://gitee.com/ModelArts/modelarts-ascend.git 图1 下载示例代码 昇腾迁移案例在“~/wor
删除数据集版本 删除数据集的指定版本。 dataset.delete_version(version_id) 示例代码 删除数据集指定版本 from modelarts.session import Session from modelarts.dataset import Dataset
更新数据集的名称和描述信息。 dataset.update_dataset(dataset_name=None, description=None) 示例代码 更新数据集名称 from modelarts.session import Session from modelarts.dataset
本教程案例是基于ModelArts Lite Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。
修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如:
AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。