检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 多机多卡 按需购买 (普通OBS桶) 包月购买 (HPC型500G) 免费 免费 包月购买 免费 包月购买 (Ubuntu 18.04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽)
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
Cluster的容器中挂载存储支持OBS、SFS Turbo等方案进行挂载。例如OBS支持静态挂载和动态挂载,而SFS Turbo仅支持静态挂载,详细的挂载操作流程可阅读通过静态存储卷使用已有极速文件存储和通过动态存储卷使用对象存储。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
”。只有处于“运行中”状态的Notebook可以执行停止操作。 Notebook停止后: “/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Noteboo
其中input_shape中的-1表示设置动态batch,ge.dynamicDims表示支持的batch值,上面的配置表示输入模型shape支持[1,3,640,640],[8,3,640,640],[16,3,640,640]这三种。 关于动态batch配置说明详见:https://www
Cluster的容器中挂载存储支持OBS、SFS Turbo等方案进行挂载。例如OBS支持静态挂载和动态挂载,而SFS Turbo仅支持静态挂载,详细的挂载操作流程可阅读通过静态存储卷使用已有极速文件存储和通过动态存储卷使用对象存储。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
Cluster的容器中挂载存储支持OBS、SFS Turbo等方案进行挂载。例如OBS支持静态挂载和动态挂载,而SFS Turbo仅支持静态挂载,详细的挂载操作流程可阅读通过静态存储卷使用已有极速文件存储和通过动态存储卷使用对象存储。 kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。
可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├──
由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts提供了扩缩容功能,用户可以根据自己的需求动态调整。 升级Lite Cluster资源池驱动:当资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/
模式),所以需要提前准备以下几个重点参数。 输入的inputShape,包含batch信息。 MSLite涉及到编译优化的过程,不支持完全动态的权重模式,需要在转换时确定对应的inputShape,用于模型的格式的编译与转换,可以在netron官网进行查看,或者对于模型结构中的输
可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├──
可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├──
可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├──
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
r的模型转换方式下,暂时只能把lora合并到unet主模型内,在每次加载模型前lora特性就被固定了(无法做到pytorch每次推理都可以动态配置的能力)。 目前临时的静态方案可参考sd-scripts, 使用其中的“networks/merge_lora.py”把lora模型合
512;token_type_ids:1,512' --saveType=MINDIR --optimize=ascend_oriented 动态seq_len场景下需要创建转换配置文件convert_config.ini,将如下内容写入配置文件: [acl_build_options]