检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data.sh
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
Git下载代码时报错 在执行scripts/install.sh安装命令或使用Dockerfile构建镜像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢
工作负载Pod异常 Pod状态为Pending 当Pod状态为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:0_pl_pretrain_13b.sh训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data.sh
Git下载代码时报错 在执行scripts/install.sh安装命令或使用Dockerfile构建镜像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend
不同模型推荐的参数与NPU卡数设置 表1 不同模型推荐的参数与NPU卡数设置 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具 (Deepspeed) 规格与节点数 Qwen-VL Qwen-VL 7B full 2048 gradient_accumulation_steps
使用Server-Sent Events协议的方式访问在线服务 背景说明 Server-Sent Events(SSE)是一种服务器向客户端推送数据的技术,它是一种基于HTTP的推送技术,服务器可以向客户端推送事件。这种技术通常用于实现服务器向客户端推送实时数据,例如聊天应用、实时新闻更新等
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig stage3
报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决? 问题现象 或 原因分析 可能为/home/ma-user/work磁盘空间不足。 解决方法 删除
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接
在Notebook中通过Dockerfile从0制作自定义镜像 场景说明 本案例将基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具(请参考ma-cli镜像构建命令介绍),通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在