检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建导入任务 支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式
创建标注任务 基于数据集创建标注任务。 dataset.create_label_task(self, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session
调优数据集异常日志说明 调优任务创建后,状态显示为“运行失败”,报错“Modelarts.6001:Unknown error, please contact the operation and maintenance personnel or check the log to locate
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
选择输入数据的OBS路径,即您上传数据的OBS目录。只能选择文件夹或“.manifest”文件。“.manifest”文件规范请参见Manifest文件规范。 说明: 输入数据为图片时,建议单张图片小于12MB。 输入数据格式为csv时,建议不要包含中文。如需使用中文,请将文件编
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查: 健康检查端口是否可以正常工作 自定义镜像中配置了健康检查,需要在测试镜像时,同步测试健康检查接口是否可以正常工作,具体参考从0-1制作自定义镜像并创建AI应用中的本地验证镜像方法。 创建模型界面上配置的健康检查地址与实际配置的是否一致
PU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。 首先通过在PyTorch训练脚本中插入dump接口,跟踪计算图
发布解决方案 如果你已经注册成为了AI Gallery平台上的合作伙伴,AI Gallery支持发布共享你的解决方案。 在“AI Gallery”页面中,单击右上角“我的Gallery > 我的主页”进入个人中心页面。 左侧菜单栏选择“解决方案”进入解决方案列表页,单击右上方的“发布”,进入发布解决方案页面。
在保存Pascal VOC的XML文件之前需要先创建包含Pascal VOC信息的对象,包括voc object信息等。保存的时候调用save_xml接口,将session信息传入,即可保存到指定路径。 from modelarts.dataset.format.voc.pascal_voc
推理服务性能评测 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 mc2融合算子报错 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
enai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/
自动创建Notebook,进入Notebook实例的JupyterLab页面。 参考使用JupyterLab在JupyterLab页面进行开发调试。 父主题: 订阅使用
chatglm2-6b chatglm3-6b gemma-2b gemma-7b mistral-7b 配套CANN8.0.RC1镜像 训练参考文档: LLama2系列(PyTorch)基于DevServer训练指导 Qwen系列(PyTorch)基于DevServer训练指导 GLM
体使用方式参考Tailor指导文档。 推理应用适配 MindSpore Lite提供了JAVA/C++/Python API,进行推理业务的适配,并且在构建模型时,通过上下文的参数来确定运行时的具体配置,例如运行后端的配置等。下文以Python接口为例。 使用MindSpore
enai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/
enai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/