检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob
首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob
首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob
分析错误时:训练镜像先看日志,推理镜像先看API的返回。 可以通过命令查看容器输出到stdout的所有日志: docker logs -f 39c9ceedb1f6 一般在做推理镜像时,部分日志是直接存储在容器内部的,所以需要进入容器看日志。注意:重点对应日志中是否有ERROR(包括,容器启动时、API执行时)。
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档
选择实例规格,规格中描述了服务器类型、型号等信息。 说明: 公共资源池暂未完全公开,如需申请使用,请联系与您对接的销售人员或拨打4000-955-988获得支持,您也可以在线提交售前咨询。 xxx 流量限制(QPS) 设置待部署模型的流量限制QPS。 3 实例数 设置服务器个数。 推荐实例数 = 流量限制 ÷ 推荐的单实例流量限制
文档导读 本文档指导您如何安装和配置开发环境、如何通过调用ModelArts SDK提供的接口函数进行二次开发。 章节 内容 SDK简介 简要介绍ModelArts SDK的概念。 快速开始 介绍如何使用ModelArts SDK进行二次开发。 (可选)本地服务器安装ModelArts
set_flag('checkpoint_exclude_patterns', 'logits') 如果使用的是MoXing内置网络,其对应的关键字需使用如下API获取。此示例将打印Resnet_v1_50的关键字,为“logits”。 import moxing.tensorflow as mox
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档
选的少量数据集。 准备预训练权重。 下载Hugging Face权重。 迁移适配。 入口函数train.py导入自动迁移接口。 执行以下命令,导入自动迁移接口。 import torch_npu from torch_npu.contrib import transfer_to_npu
界面创建训练作业,创建时基于算法来源和训练框架又区分多种创建方式,具体请参见表2。 ModelArts Standard也支持通过调用API接口创建训练作业,请参见以PyTorch框架创建训练作业。 训练作业进阶功能 ModelArts Standard还支持以下训练进阶功能,例如:
uster资源池的购买后,您即可对资源进行配置,并将数据上传至存储云服务中。当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite
lArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。因此推荐通用的解决方案:使用os接口得到依赖文件的绝对路径,避免报错。 以下示例展示如何通过os接口获得其他文件夹下的依赖文件路径。 文件目录结构: project_root