检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
资源池监控 功能介绍 获取资源池的监控信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools/{pool_name}/monitor
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
批量添加样本 功能介绍 批量添加样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
删除AI应用 功能介绍 删除AI应用,根据AI应用ID删除指定AI应用,cascade取值为true时除了删除AI应用ID指定的AI应用,还会删除其他与指定AI应用同名不同版本的AI应用;默认只删除当前AI应用ID所对应的AI应用。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
解析Manifest文件 解析Manifest文件,支持本地和OBS。如果是OBS,需要Session信息。 manifest.parse_manifest(manifest_path, encoding='utf-8') 示例代码 通过Manifest路径来解析获取Manifest的信息。
免费资产和商用资产 AI Gallery既有免费分享的AI资产,也有商业售卖的AI资产。 免费资产无需支付费用,只需要支付在使用过程中消耗的硬件资源,硬件资源费用将根据实际使用情况由华为云ModelArts等管理控制台向使用方收取。 当前支持免费分享和订阅的资产类型有:Noteb
订阅Workflow 在AI Gallery中,您可以查找并订阅免费的Workflow。订阅成功的Workflow通过AI Gallery导入后可以直接在ModelArts控制台使用。 AI Gallery中分享的Workflow支持免费订阅,但在使用过程中如果消耗了硬件资源进行
查询工作空间配额 功能介绍 查询工作空间配额。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/workspaces/{workspace_id}/quotas
修改工作空间 功能介绍 修改工作空间。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v1/{project_id}/workspaces/{workspace_id}
SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ