检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
packages=packages) dependencies.append(dependency) 基于自定义镜像创建模型 适用于推理服务的脚本已经内置在自定义镜像中,镜像启动时会自动拉起服务的场景。 from modelarts.session import Session from
SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 Controlnet训练 父主题: AIGC模型训练推理
准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS
user_image_url 否 String 自定义镜像训练作业的自定义镜像的SWR-URL。如:“100.125.5.235:20202/jobmng/custom-cpu-base:1.0”。 user_command 否 String 自定义镜像训练作业的自定义镜像的容器的启动命令。形式为:“bash
使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。
华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转换后可以在昇腾上获得更好的性能,配合丰富的适配工具链,降低迁移成本,该工具在推理迁移工作的预置镜像已安装,可在镜像中直接使用(见环境准备)。关于MindSpore Lite详细介绍可参考MindSpore Lite文档。在使用MindSpore
本章节介绍基于VS Code环境访问Notebook的方式。 前提条件 已下载并安装VS Code。详细操作请参考安装VS Code软件。 用户本地PC或服务器的操作系统中建议先安装Python环境,详见VSCode官方指导。 创建一个Notebook实例,并开启远程SSH开发。该实例状态必须处于
创建模型 创建模型不同方式的场景介绍 从训练作业中导入模型文件创建模型 从OBS中导入模型文件创建模型 从容器镜像中导入模型文件创建模型 从AI Gallery订阅模型 父主题: 使用ModelArts Standard部署模型并推理预测
(可选)本地安装ma-cli ma-cli auto-completion自动补全命令 ma-cli configure鉴权命令 ma-cli image镜像构建支持的命令 ma-cli ma-job训练作业支持的命令 ma-cli dli-job提交DLI Spark作业支持的命令 使用ma-cli
sleep.py示例: import os os.system('sleep 60m') 图4 预置框架启动方式 如果训练作业使用的是自定义镜像 在创建训练作业时,“创建方式”选择“自定义算法”,“启动方式”选择“自定义”,“启动命令”输入“sleep 60m”。这样启动的作业将会持续运行60分钟。您可通过Cloud
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何
使用订阅算法训练结束后没有显示模型评估结果 创建训练任务并成功运行, 但是发布到至AI Gallery时, 版本那块显示状态异常 使用python3.6-torch1.4版本镜像环境安装MMCV报错 父主题: 训练作业
user_image_url 否 String 自定义镜像训练作业的自定义镜像的SWR-URL。如:“100.125.5.235:20202/jobmng/custom-cpu-base:1.0”。 user_command 否 String 自定义镜像训练作业的自定义镜像的容器的启动命令。形式为:“bash
I引擎”和“运行环境”后,部分支持健康检查的引擎会显示该参数,请以实际界面显示为准。 当使用Custom引擎时,引擎包需要选择容器镜像,仅当容器镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致模型创建失败。 当前支持以下三种探针: 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。
(Docker/Containerd) 工作目录、容器镜像的数据和镜像元数据;另一块用于Kubelet组件和EmptyDir临时存储等。通过“指定磁盘空间”参数设置这两块分区大小的比例。容器引擎空间的剩余容量将会影响镜像下载和容器的启动及运行。 容器盘的类型是本地盘时,不支持设置“指定磁盘空间”。