检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。
格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 SharegptStyleInstructionHandler 已支持的系列模型模板:
件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。
加载中断生成的checkpoint,中间不需要改动任何参数(支持预训练、LoRA微调、SFT微调)。 如果要使用自动重启功能,资源规格必须选择八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6
格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 SharegptStyleInstructionHandler 已支持的系列模型模板:
模型的大小。 健康检查 如果元模型来源于对象存储服务/容器镜像,显示健康检查状态。当健康检查为开启时,会根据您启用的探针显示对应探针的参数设置情况。 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup probe),则禁用所有其他探针,直到它成功为止。如果
TensorBoard可视化训练作业,当前仅支持基于TensorFlow、PyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。
版本说明和要求 资源规格要求 本文档中的模型运行环境是ModelArts Lite的弹性节点Server。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,
error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 为指定服务添加标签。设置TMS标签的key为“test”和“model_version”,TMS标签的value为“service-gpu”和“0.1”。 htt
scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 通过OpenAI服务API接口启动服务使用
当为自定义镜像训练作业的时候,此参数为容器环境变量。详细请参见表4 spec_id 是 Long 训练作业选择的资源规格ID。请从查询作业资源规格接口获取资源规格ID。 data_url 否 String 训练作业需要的数据集OBS URL。如:“/usr/data/”。 不可与
scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 Step9 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 通过OpenAI服务API接口启动服务使
scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 通过OpenAI服务API接口启动服务使用
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
transformers sentencepiece #安装量化工具依赖 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs
transformers sentencepiece #安装量化工具依赖 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs
Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite # 设置目标设备上下文为Ascend,指定device_id为0。
placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ) # 训练资源规格信息 ) # 定义条件对象 condition_lt = wf.steps.Condition( condition_type=wf
训练管理 训练作业 资源和引擎规格接口
ImportError: No module named npu_bridge.npu_init 检查下训练作业使用的规格是否支持NPU,有可能是训练时使用了GPU规格,导致发生了NPU相关调用报错。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。