检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
instance xxx: 'ssh' ...”如何解决? 问题现象 或 VS Code连接Notebook一直提示选择证书,且提示信息除标题外,都是乱码。选择证书后,如上图所示仍然没有反应且无法进行连接。 原因分析 当前环境未装OpenSSH或者OpenSSH未安装在默认路径下,详情请参考VS
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性地做一些调优操作。 您可以直接使用ben
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 问题现象 使用MoXing训练模型,“global_step”放在Adam名称范围下,而非MoXing代码中没有Adam名称范围,如图1所示。其中1为
分别表示从步骤2中NPU环境所生成的dump.json、标杆环境生成的dump.json及NPU环境生成的stack.json文件,is_print_compare_log配置是否开启日志打屏。 多卡场景区别于单卡场景会在步骤2按rank标号信息生成多个rank的dump文件结果
msprobe梯度监控 梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。
使用Windows下生成的文本文件时报错找不到路径? 问题现象 当在Notebook中使用Windows下生成的文本文件时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。
msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整网计算中和标杆场景下
MA-Advisor性能调优建议工具使用指导 MA-Advisor是一款迁移性能问题自动诊断工具,其集成了昇腾自动诊断工具msprof-analyze,并在ModelArts Standard的Jupyter lab平台进行了插件化,能快速分析和诊断昇腾场景下PyTorch性能劣化问题并给出相关调优建议。
MindStudio-Insight性能可视化工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
留的默认工作空间名称,不能使用)。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/workspaces 表1 路径参数 参数
具体可参考Eagle投机小模型训练章节步骤五:训练生成权重转换成可以支持vLLM推理的格式。 Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。 图2 创建AI应用 设置创建A
步骤五:训练生成权重转换成可以支持vLLM推理的格式 Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。 图2 创建AI应用 设置创建AI
启动AI应用 上传AI应用的运行文件“app.py”。在AI应用详情页,选择“应用文件”页签,单击“添加文件”,进入上传文件页面。 运行文件的开发要求请参见准备AI应用运行文件app.py。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery
repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下
在ModelArts控制台的AI应用模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“资产管理 > AI应用 > 创建”,开始创建AI应用。 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型。 根据需要自定义应用的名称和版本。
在ModelArts控制台的AI应用模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“资产管理 > AI应用 > 创建”,开始创建AI应用。 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型。 根据需要自定义应用的名称和版本。
在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。 图2 创建AI应用 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型。
Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts