已找到以下 195 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 什么是推荐系统 - 推荐系统 RES

    什么是推荐系统 推荐系统(Recommender System,简称RES) ,基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 RES优势 开放式推荐 提供完整的推荐平台和原子推荐算法,不绑定客户的运营场景

  • 排序策略 - 推荐系统 RES

    排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机

  • 查询效果指标 - 推荐系统 RES

    查询效果指标 功能介绍 该接口用于查询推荐效果指标。 URI GET /v1/{project_id}/query-indicators/{job_id} 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离

  • 排序策略-离线排序模型 - 推荐系统 RES

    排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个

  • 自定义场景关闭后,为什么会自动启动? - 推荐系统 RES

    自定义场景关闭后,为什么会自动启动? 在创建自定义场景时,如果设置了自动召回策略,且此召回策略关联了在线服务,就会自动运行场景实例。用户可关闭召回策略,或者在在线服务中删除依赖的这个策略。 父主题: 自定义场景

  • 查询训练作业候选集 - 推荐系统 RES

    查询训练作业候选集 功能介绍 查询给定workspaces_id和指定resource_id下的候选集。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resources

  • 自定义场景简介 - 推荐系统 RES

    自定义场景简介 RES面向了解推荐算法等相关的用户,可自定义推荐中涉及算法的使用和组合,能够自定义开发推荐流程,提供推荐服务。您可以基于RES提供的多种推荐训练作业得到推荐候选集,用于在线服务计算得到推荐结果。 自定义场景功能说明 表1 功能说明 功能 说明 详细指导 创建自定义场景

  • 配额说明 - 推荐系统 RES

    配额说明 为防止资源滥用,平台限定了各服务资源的配额,对用户的资源数量和容量做了限制。 表1 RES服务配额 资源 限制条件 建议 推荐引擎预测接口中最多请求结果数量 20 可提工单支持更高规格。 单份画像数据中最多支持的特征数量 30 单场景在线服务最多支持每秒请求的次数(TPS

  • 工作空间简介 - 推荐系统 RES

    工作空间简介 RES工作空间帮您实现离线作业、近线作业和在线服务隔离的功能,达到不同角色用户信息隔离管理的目的。 如果您未开通企业项目管理服务的权限,您可以在RES创建自己独立的工作空间。 如果你开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目,并在企业项目下添加用户组

  • 如何开始使用RES? - 推荐系统 RES

    如何开始使用RES? 使用RES,从资源准备到在线服务完成推荐的全流程,如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。 准备离线数据源

  • 终端节点 - 推荐系统 RES

    终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 推荐系统的终端节点如表1所示,请您根据业务需要选择对应区域的终端节点。 表1 推荐系统的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京四

  • 提交实时流近线作业 - 推荐系统 RES

    提交实时流近线作业 功能介绍 该接口用于提交实时流作业并进行近线计算。 URI POST /v1/{project_id}/nearline-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离

  • RES操作流程 - 推荐系统 RES

    RES操作流程 操作流程 本章节介绍使用RES,从资源准备到在线服务完成推荐的全流程。RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算

  • 近线作业 - 推荐系统 RES

    近线作业 近线作业简介 近线作业为推荐系统提供实时计算能力。近线作业以数据接入服务DIS中的数据为数据源,实时计算并更新用户画像、物品画像和推荐候选集等数据。使用近线作业,用户需先将业务系统埋点日志转换成实时日志指定格式,并实时写入DIS相应通道。近线作业具体实现请参见图1。 图1

  • 智能场景简介 - 推荐系统 RES

    智能场景简介 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法

  • 约束与限制 - 推荐系统 RES

    约束与限制 您能创建的在线服务的数量与配额有关系,具体请参见关于配额。 更详细的限制请参见具体API的说明。 父主题: 使用前必读

  • RES操作流程 - 推荐系统 RES

    RES操作流程 本章节介绍使用RES,从资源准备到在线服务完成推荐的全流程。RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 准备资源 开通相关资源 基于您的业务需求,您需要开通RES相关服务,包括: 计算引擎DLI、ModelArts

  • 上传实时数据 - 推荐系统 RES

    上传实时数据 RES通过DIS SDK上传实时数据,用户实时日数据并做近线处理。当前仅支持Java语言的SDK,示例请参见《数据接入服务SDK参考》。 前提条件 如果需要使用近线上传实时数据的用户,可以使用DIS SDK接口上传,请您按照需求下载DIS SDK,下载完之后按照下面的说明进行

  • 获取项目ID - 推荐系统 RES

    获取项目ID 调用API获取项目ID 项目ID还用通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects/”,其中{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。接口的认证鉴权请参见认证鉴权

  • 上传离线数据源至OBS - 推荐系统 RES

    上传离线数据源至OBS RES使用对象存储服务(Object Storage Service,简称OBS)进行数据源的存储。因此,在使用RES之前您需要开通OBS服务并创建桶,然后在OBS桶中上传用户数据用于推荐作业的计算。 需要存放在OBS桶中的数据包括: 离线数据源:包含用户类数据