内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之构建机器学习算法

    这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下

    作者: 小强鼓掌
    525
    1
  • 深度学习之构建机器学习算法

    闭解。这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定

    作者: 小强鼓掌
    830
    3
  • 深度学习应用开发》学习笔记-11

    太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就

    作者: 黄生
    1128
    1
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1263
    13
  • 深度学习应用开发》学习笔记-10

    征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风

    作者: 黄生
    1431
    3
  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    发表时间: 2019-01-21 10:50:40
    5904
    0
  • 学习笔记 - AI在软件开发质量管理中的应用

    作为一个开发人员,总有一部分时间要花在写自动化测试用例上面,如何保证软件开发的质量,如何测试软件,从早期的人工测试到目前的自动化测试,人们一直在寻求更优的解决方案。AI已经在图像识别,物体检测和语音识别各个实际的应用领域发展开来,但在软件开发和测试领域,还处于懵懂的阶段,如何让AI助力软件测试领域,下面通过来自一个资深

    作者: RabbitCloud
    741
    1
  • 深度学习深陷困境!

    年多伦多举行的一场人工智能会议上,深度学习“教父” Geoffrey Hinton 曾说过,“如果你是一名放射科医生,那么你的处境就像一只已身在悬崖边缘却毫不自知的郊狼。”他认为,深度学习非常适合读取核磁共振(MRIs)和 CT 扫描图像,因此我们应该“停止培训放射科医生”,而且在五年内,深度学习会有更大的进步。然而,时间快进到

    作者: 星恒
    250
    3
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    177
    1
  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习和非监督学习之间的界限。由于缺少标签数据和收集标签数据集的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    930
    1
  • 微认证:鲲鹏软件迁移实践 —— 鲲鹏软件迁移概述

    需要做软件迁移的原因 2. 软件迁移过程概述——五个步骤完成软件迁移 迁移准备——收集软件栈信息,准备迁移工作 环境申请 信息收集 迁移分析——分析软件栈,制定迁移策略 软件栈分析【分析哪些组件需要迁移、迁移难度、迁移的方案】 编程语言/代码/依赖库分析 编译迁移——软件编译打包,验证基本功能

    作者: ruochen
    发表时间: 2021-02-23 17:48:57
    10438
    0
  • 软件测试流程

    ug,直到被测软件达到测试需求要求,测试结束;4.测试总结阶段:项目测试结束,负责人输出测试报告,对整个测试过程和版本质量做一个详细评估,确认是否可以上线;二、测试执行阶段详述1.功能测试阶段功能测试是软件测试最基础的阶段,是进入软测行业的必经阶段,主要是理论的学习。包括:计算机

    作者: 奔四码农
    发表时间: 2020-11-24 11:41:38
    5277
    0
  • 深度学习应用开发》学习笔记-31

    com/data/forums/attachment/forum/202108/04/105156dxvyfdoaeoob1d2w.png) ```python #插播学习一下reshape,总体顺序还是不变,但切分点变了 import numpy as np int_array=np.array([i for

    作者: 黄生
    520
    0
  • 深度学习应用开发》学习笔记-12

    数据不是收集的,是自己生成的,好吧~一个简单的例子学习用的没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1的随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 机器学习深度学习的比较

    虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因此,深度学习要求包括GPU。这是它

    作者: @Wu
    541
    1
  • k8s学习-深入理解Pod对象

    Pod是最小的部署单元,也是后面经常配置的地方,本章节带你熟悉Pod中常见资源配置及参数。 也就是YAML这部分: ... template: metadata: labels: app: web spec: containers: - image: lizh

    作者: 互联网老辛
    发表时间: 2021-06-08 15:40:11
    1165
    0
  • 深度学习随机取样、学习

    4-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    4-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可

    作者: 运气男孩
    1444
    5
  • 深度学习应用开发》学习笔记-09

    0那一节开始看起,环境呢就不用自己搭建了,直接用modelarts里的开发环境Notebook里的jupyterLab,免费使用只是每小时会停止一下,对于学习来说没有关系。基本概念,tensorflow=tensor张量 + flow 流张量具体是啥意思之前不是很明白,只知道张力的概念,比如在亚

    作者: 黄生
    1745
    3