检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
子图匹配算法(subgraph matching) 功能介绍 根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project
执行算法 功能介绍 根据输入参数,执行指定算法。 URL POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String 项目ID。获取方法请参见获取项目ID。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
算法参考 算法一览表 PageRank算法 PersonalRank算法 k核算法(k-core) k跳算法(k-hop) 最短路径算法(Shortest Path) 全最短路算法(All Shortest Paths) 带一般过滤条件最短路径(Filtered Shortest
三角计数算法(triangle_count) 功能介绍 根据输入参数,执行三角计数算法。 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 URI POST /ges/v1.0/{project_id}/hyg
标签传播算法(label_propagation) 功能介绍 根据输入参数,执行label_propagation算法。 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系
k核算法(kcore)(1.0.0) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 k 是 核数。 算法会返回核数大于等于k的节点。 Integer 大于等于0。 - 表2 response_data参数说明 参数 类型 说明 coreness
聚类系数算法(cluster_coefficient) 功能介绍 根据输入参数,执行cluster_coefficient算法。 聚类系数算法(cluster_coefficient)用于计算图中节点的聚集程度。 URI POST /ges/v1.0/{project_id}/h
) topicrank算法(topicrank) louvain算法(louvain) Bigclam算法(bigclam) Cesna算法(cesna) infomap算法(infomap) 标签传播算法(label_propagation) 子图匹配算法(subgraph matching)
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
算法API参数参考 算法公共参数 pagerank算法(1.0.0) personalrank算法(1.0.0) k核算法(kcore)(1.0.0) k跳算法(k_hop)(1.0.0) 共同邻居(common_neighbors)(1.0.0) 点集共同邻居(common_n
度数关联度算法(Degree Correlation) 概述 度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
k跳算法(k_hop)(1.0.0) 表1 parameters参数说明 参数 是否必选 类型 说明 k 是 Integer 跳数,取值范围[1,100]。 num_thread 否 Integer 并发线程数。范围为[1,40],小于1会自动置为1,大于40则自动置为40。默认值为4。
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域