检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Verification successful 步骤二:准备数据 准备算法 此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。 在弹出的窗口中,勾选“我已阅读并同意
订阅Workflow 在AI Gallery中,您可以查找并订阅免费的Workflow。订阅成功的Workflow通过AI Gallery导入后可以直接在ModelArts控制台使用。 AI Gallery中分享的Workflow支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制
订阅使用 查找和收藏资产 订阅免费算法 订阅免费模型 下载数据 使用Notebook代码样例 使用镜像 使用AI案例 订阅Workflow 父主题: AI Gallery(旧版)
发布分享 发布免费算法 发布免费模型 发布数据 发布Notebook 父主题: AI Gallery(旧版)
格说明。 AI应用封面图 否 上传一张AI应用封面图,AI应用创建后,将作为AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,
在微调工作流的“作业设置”环节配置训练作业参数。 算法配置,会显示已选模型的信息,基于已选模型选择微调方式。 当“训练任务类型”是“文本问答”或“文本生成”时,AI Gallery支持的微调方式是LoRA。 当“训练任务类型”是“自定义”时,微调方式来自于模型文件“train_params.json”
发布模型到AI Gallery。 使用AI Gallery微调大师训练模型或使用AI Gallery在线推理服务部署模型。 如果进行模型微调,则“训练任务类型”选择“自定义”。 如果部署为推理服务,则“推理任务类型”选择“自定义” 自定义模型规范(训练) 当托管自定义模型到AI Gallery时,如果模型要支持AI
快速推理、部署模型;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代码即可调用任何模型,大幅度降低了模型开发门槛。 充足澎湃算力,最佳实践算力推荐方案,提升实践效率和成本 AI Galle
准备一台具有Docker功能的机器,如果没有,建议申请一台弹性云服务器并购买弹性公网IP,并在准备好的机器上安装必要的软件。 ModelArts提供了ubuntu系统的脚本,方便安装docker。 本地Linux机器的操作等同ECS服务器上的操作,请参考本案例。 登录ECS控制台,购买弹性云服务器,镜像选择“公共镜像”,推荐使用ubuntu18
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucket_name>llm_train/AscendFactory代码目录。 图1 创建训练作业 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucket_name>llm_train/AscendFactory代码目录。 图1 创建训练作业 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根
ModelArts在线服务的API接口组成规则是什么? 模型部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig
在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题: Standard推理部署
name="training_job", title="图像分类训练", algorithm=wf.AIGalleryAlgorithm( subscription_id="**", # 图像分类算法的订阅ID,自行前往算法管理页面进行查看,可选参数,此处以订阅算法举例
服务部署失败,报错No Module named XXX 问题现象 服务部署失败,报错:No Module named XXX 原因分析 No Module named XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。
域。 配置训练作业参数 在PyCharm中,打开训练代码工程和训练启动文件,然后在菜单栏中选择“ModelArts > Training Job > New...”。 图1 选择作业配置 在弹出的对话框中,设置训练作业相关参数,详细参数说明请参见表1。 表1 训练作业配置参数说明
Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地。AI开发并不是一个单向的流水线作业,在开发的过程中,会根据数据和模型结果进行多轮的实验迭代。算法工程师会根据数据特征以及数据的标签做多样化的数据处理以及多种模型优化,以获得在已有的数据
“添加模型说明”,设置“文档名称”及其“URL”。模型说明最多支持3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。
Standard推理部署在线服务 单个账号最多可创建20个在线服务。 是 提交工单申请提升配额 更多信息,请参见部署在线服务。 Standard推理部署批量服务 单个账号最多可创建1000个批量服务。 否 更多信息,请参见部署批量服务。 Standard推理部署边缘服务 单个账号最多可创建1000个边缘服务。