检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用API提交训练作业后,能否绘制作业的资源占用率曲线? 调用API提交训练作业后,您可登录ModelArts控制台,在“模型训练 > 训练作业”中,单击“名称/ID”进入“训练作业详情”页面的“资源占用情况”模块,查看作业的资源占用率曲线。 父主题: API/SDK
Loss对齐结果 在排查完精度偏差来源之后发现,Loss最大绝对偏差减少为0.0003,Loss结果对齐。需要注意训练引入随机性的目的是为了增加结果的鲁棒性,理论上不会对训练模型的收敛与否造成影响,这里做随机性固定主要的目的是为了训练结果可完全复现,从而实现NPU和标杆的精度对齐。
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 指令监督微调训练任务 查看日志和性能 训练脚本说明 附录:指令微调训练常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
从DLI导入数据到ModelArts数据集 表格数据集支持从DLI导入数据。 从DLI导入数据,用户需要选择DLI队列、数据库和表名称。所选择的表的schema(列名和类型)需与数据集一致,支持自动获取所选择表的schema。DLI的详细功能说明,请参考DLI用户指南。 图1 DLI导入数据
从MRS导入数据到ModelArts数据集 ModelArts支持从MRS服务中导入存储在HDFS上的csv格式的数据,首先需要选择已有的MRS集群,并从HDFS文件列表选择文件名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。
RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/
py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: $
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: $
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
自定义python包中如果引用model目录下的文件,文件路径怎么写 如果容器中的文件实际路径不清楚,可以使用Python获取当前文件路径的方法获取。 os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)