检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
能评估等,让AI项目管理者能很方便的查看流水线执行过程的质量与效率。 流程优化:围绕流水线每一次迭代,用户可以自定义输出相关的核心指标,并获取相应的问题数据与原因等,从而基于这些指标,快速决定下一轮迭代的执行优化。 Workflow介绍 Workflow(也称工作流,下文中均可使
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 final_annotation 否 Boolean
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 email 否 String 标注团队成员邮箱。 high_score
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1
yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作
/v2/{project_id}/training-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 kind 是 String 训练作业类型。默认使用job,表示训练作业。
”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 安装Docker。 以Linux aarch64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL
在线服务和模型负载运行状态进行日常监控。您可以通过管理控制台,直观地查看ModelArts在线服务和模型负载的各项监控指标。由于监控数据的获取与传输会花费一定时间,因此,云监控显示的是当前时间5~10分钟前的状态。如果您的在线服务刚创建完成,请等待5~10分钟后查看监控数据。 前提条件:
BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构
表示成功执行动态路由。 kubectl logs {pod-name} 其中{pod-name}替换为实际pod名称,可以在5的回显信息中获取。 图4 成功执行动态路由的回显 只有任务节点大于等于3的训练任务才能成功执行动态路由。 如果执行失败可以参考故障排除:ranktable路由优化执行失败处理。
steps=[job_step], storages=[storage] ) Workflow不会自动获取训练输出的指标信息,要求用户自行在算法代码中获取指标信息并且按照指定的数据格式构造出metrics.json文件,自行上传到MetricsConfig中配置的OB
${your_container_id}:/xxx/xxx/pytorch.tar.gz . 将pytorch.tar.gz上传到OBS并设置公共读,并在构建时wget获取、解压、清理。 新镜像构建 基础镜像一般选用ubuntu 18.04的官方镜像,或者nvidia官方提供的带cuda驱动的镜像。相关镜像直接到dockerhub官网查找即可。
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 check_running_task 否 Boolean 是
lm_tools/llm_evaluation/benchmark_tools conda activate python-3.9.10 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
3.wav 表格 支持从OBS导入csv文件,需要选择文件所在目录,其中csv文件的列数需要跟数据集schema一致。支持自动获取csv文件的schema。 ├─dataset-import-example │ table_import_1.csv │
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
在Notebook中,无法直接使用默认版本的torchvision获取数据集,因此示例代码中提供了三种训练数据加载方式。 cifar-10数据集下载链接,单击“CIFAR-10 python version”。 尝试基于torchvision获取cifar10数据集。 基于数据链接下载数据并解压
/v2/{project_id}/datasets 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 check_running_task 否 Boolean 是
安装模型 安装Megatron-Deepspeed框架。 使用root用户SSH的方式登录GPU裸金属服务器,登录方式在华为云购买页面可以获取。 拉取pytorch镜像,可以选择常用的镜像源进行下载。 docker pull nvcr.io/nvidia/pytorch:21.10-py3