检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发思路 使用Structured Streaming接收Kafka中数据,生成请求流、展示流、点击流。 对请求流、展示流、点击流的数据进行关联查询。 统计结果写入kafka。 应用中监控流处理任务的状态。 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请
算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query Analysis):支持标准SQL查询分析,同时提供DSL(DataFrame), 并支持多种外部输入。 本文档重点介绍Spark、Spark SQL和Spark
Kafka相关特性说明 Kafka Idempotent 特性 特性说明:Kafka从0.11.0.0版本引入了创建幂等性Producer的功能,开启此特性后,Producer自动升级成幂等性Producer,当Producer发送了相同字段值的消息后,Broker会自动感知消息
Kafka相关特性说明 Kafka Idempotent特性 特性说明:Kafka从0.11.0.0版本引入了创建幂等性Producer的功能,开启此特性后,Producer自动升级成幂等性Producer,当Producer发送了相同字段值的消息后,Broker会自动感知消息是
选择验证环境上有数值(int或double类型)列的表,此处选择hive.default.test1,执行如下命令验证Function Plugin。 查询表。 select * from hive.default.test1; select * from hive.default.test1;
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。如果Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设
Spark HA方案介绍 Spark多主实例HA原理与实现方案 基于社区已有的JDBCServer基础上,采用多主实例模式实现了其高可用性方案。集群中支持同时共存多个JDBCServer服务,通过客户端可以随机连接其中的任意一个服务进行业务操作。即使集群中一个或多个JDBCSer
hbase”,勾选“hbase:meta”的“执行”。 选择“待操作集群的名称 > Hive > Hive读写权限”,勾选“default”的 “查询”、“插入”、“建表”、“递归”。 编辑角色,在“配置资源权限”的表格中选择“待操作集群的名称 > Yarn > 调度队列 > root”
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。若Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设置
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。实现实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询的功能。 FlinkStreamSqlJoinScalaExample flink-sql 使用客户端通过jar作业提交SQL作业的应用开发示例。
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。实现实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询的功能。 FlinkStreamSqlJoinScalaExample flink-sql 使用客户端通过jar作业提交SQL作业的应用开发示例。
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query Analysis):支持标准SQL查询分析,同时提供DSL(DataFrame), 并支持多种外部输入。 本文档重点介绍Spark、Spark SQL和Spark
Spark Python API接口介绍 由于Spark开源版本升级,为避免出现API兼容性或可靠性问题,建议用户使用配套版本的API。 Spark Core常用接口 Spark主要使用到如下这几个类: pyspark.SparkContext:是Spark的对外接口。负责向调用
Spark Java API接口介绍 由于Spark开源版本升级,为避免出现API兼容性或可靠性问题,建议用户使用配套版本的开源API。 Spark Core常用接口 Spark主要使用到如下这几个类: JavaSparkContext:是Spark的对外接口,负责向调用该类的J
Spark Scala API接口介绍 由于Spark开源版本升级,为避免出现API兼容性或可靠性问题,建议用户使用配套版本的开源API。 Spark Core常用接口 Spark主要使用到如下这几个类: SparkContext:是Spark的对外接口,负责向调用该类的scal
Spark Python接口介绍 由于Spark开源版本升级,为避免出现API兼容性或可靠性问题,建议用户使用配套版本的开源API。 Spark Core常用接口 Spark主要使用到如下这几个类: pyspark.SparkContext:是Spark的对外接口。负责向调用该类