检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
oAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称
您可以在图片上方或下方单击左右切换键,或者按键盘的左右方向键,选择其他图片,重复上述操作继续进行图片标注。如果一张图片有多个物体,您可以标注多处。 同一个物体检测自动学习项目内,可以增加多个标签,且标签可选择不同颜色,方便识别。使用鼠标完成物体框选后,在弹出的对话框中,选择新的颜色,输入新的标签名称,即可添加一个新的标签。
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
1、使用该量化工具,需要切换conda环境,运行以下命令。 conda activate awq 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 python examples/quantize.py --model-path
Qwen2.5-72B √ x Qwen2.5-32B √ √ 前提条件 在“我的模型”页面存在已创建成功的模型。 已准备好用于存放压缩后模型权重文件的OBS桶,OBS桶必须和MaaS服务在同一个Region下。 创建压缩作业 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。
见配置访问授权章节。 工作空间 工作空间是ModelArts面向已经开通企业项目的企业客户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。 在开通工作空间后,系统会默认为您创建一个“default”空间,您之前所创建的所有
起验收、继续验收以及查看验收报告等功能。 团队标注功能是以团队为单位进行管理,数据集启用团队标注功能时,必须指定一个团队。一个团队可以添加多个成员。 一个账号最多可添加10个团队。 如果数据集需要启用团队标注功能,当前账号至少拥有一个团队。如果没有,请执行添加团队操作添加。 父主题:
低。 可以尝试使用其他Region(如北京四切换为上海一)。 如果有长期的资源使用诉求,可以购买独占使用的专属资源池。 专属资源池: 如有多个可用的专属资源池,可尝试选择其他较为空闲的资源池。 可清理当前资源池下的其他资源,如停止长时间不使用的Notebook。 在非高峰期时提交训练作业。
后有的节点没有复制完,其他节点进行torch.distributed.init_process_group()导致超时。 处理方法 如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch.distributed.init_proces
--parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128