检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
授权后,在调用盘古大模型能力时,模型的输入和输出将分别调用一次内容审核服务,该服务为付费项,用户可按需购买。 若不使用,您也可以自行对接第三方内容审核服务。关于大模型生成内容的责任主体,请参考《盘古大模型服务协议》。 启用内容审核服务 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,单击“开启内容审核”,进行授权。
登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 图2 申请开通服务 在“概览 > 服务列表”中选择需要调用的模型,并单击操作列的“调用路径”,在弹窗中可获取对应模型的API请求地址。 图3
创建AI助手 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,单击页面右上角“创建助手”。参考表1完成AI助手匹配。 表1 创建AI助手参数说明 参数分类 参数名称 参数说明 基本信息 助手名称 设置AI助手的名称。 描述 填写AI助手的描述,如填写功能介绍。
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
debug("-----> stream data: {}", JSON.toJSONString(agentEvent)); } } 事件类型列表如下: /** * 消息创建 */ MESSAGE_CREATED("session.message.created")
使用API调用模型 通过API编写代码方式调用模型。 使用API调用模型 提示词工程 - 利用精心设计的提示词优化和引导大模型生成更加准确和相关的输出,提高模型在特定任务中的表现。 提示词工程 AI助手 - 通过大模型搭建Agent应用,并结合多种工具,实现对话问答、规划推理和逻辑判断功能。
练。当训练广告文案生成任务时,训练数据则需要包含一定量的广告文案数据。 模型评估 一个评估数据集内,上传的数据文件数量不得超过100个,单文件大小不得超过1GB,所有文件的总大小不得超过1GB。 数据格式要求 盘古大模型服务支持如下数据,格式要求请参见表3。 表3 盘古数据文件格式要求
边缘部署准备工作 本指南的边缘部署操作以largemodel集群为例,示例集群信息如下表。 表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge
ask("写一篇五言律诗").getAnswer(); 支持调整的参数解释。 private int maxTokens; // 完成时要生成的令牌的最大数量 private double temperature; // 调整随机抽样的程度,温度值越高,随机性越大 private
使用Postman调用API 获取API请求地址。 在“服务管理”页面,单击所需API的“查看详情”按钮。 图1 服务管理 在“模型列表”中选择需要调用的模型,单击操作栏中的“调用路径”,复制对应模型的API请求地址。 图2 获取API请求地址 获取Token。 在调用盘古A
upload(upload_file, upload_bt, file_output) greet_btn = gr.Button("生成摘要") output = gr.Textbox(label="输出") greet_btn.click(fn=summary
调测AI助手 在AI助手的创建页面可以直接进行调测,也可以在AI助手列表页进行调测。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,选择需要调测的AI助手,单击“调测”按钮。 图1 AI助手 在调测页面,可以调整AI助手的指令,输入问题后,单击“运行”获得模型回复结果。
} @AgentTool注解说明: toolId。表示工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 toolDesc。工具的描述,为重要参数,尽可能的准确简短描述工具的用途。 toolPrinciple。表示何时使用该工具,为重要参数。该描述直接影响LLM
模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,设置模型类型、训练类型、训练模型、训练参数和checkpoints等参数。 其中,训练配置选择LLM(大语言模型),训练类型选择自监督训练,根据所选模型配置训练参数。 表1 自监督训练参数说明 参数名称 说明 模型类型
示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。
登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“创建工具”页面参考表1完成工具代码的设置。 表1 创建工具参数说明 参数 是否必选 参数类型 描述 tool_id 是 String 工具ID,必须由英文小写字母和_组成,需要符合实际工具含义。
入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 > 边缘部署”,查看边缘部署列表。 单击“服务名称”可进入服务详情界面。 如果服务部署状态为“部署失败”,可单击服务操作列的“启动”按钮,重新部署。 父主题: 部署为边缘服务
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数
注册边缘资源池节点 进入ModelArts服务,选择所需空间。 在左侧列表中单击“边缘资源池”,在“节点”页签中,单击“创建”。 在“创建边缘节点”页面中,填写节点名称,配置AI加速卡与日志信息,单击“确定”。 如果节点有npu设备需选择“AI加速卡 > Ascend”,并选择加速卡类型。