检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
定义文件; 作业发起方配置TICS的横向联邦学习作业,启动训练; 模型参数、梯度数据在TICS提供的安全聚合节点中进行加密交换; 训练过程中,各参与方计算节点会在本地生成子模型,由TICS负责安全聚合各子模型的参数,得到最终的模型; 空间的整体配置通过空间管理员进行统一管理。 父主题:
采用容器化资源/部署管理,支持调度方、数据参与方、计算方的弹性扩缩容。 安全隐私 支持用户自定义隐私策略,实现敏感数据的识别、脱敏、水印保护,保障隐私数据安全; 多方协同过程中隐私信息交互(SQL JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支持安全多方计算,如基于隐私集合求交PSI(Private Set
Token可通过调用获取用户Token接口获取,调用本服务API需要project级别的Token,即调用获取用户Token接口时,请求body中auth.scope的取值需要选择project,如下所示。 { "auth": { "identity": {
图2 作业结果 在返回最终统计结果前,增加了一个差分隐私计算的任务节点,如图3所示。 图3 差分隐私计算任务节点 再执行如下sql,sql中过滤掉了某个企业,试图用差值去计算这个企业的税收值。 Select industry, sum(tax_bal), sum(electric_bal)
user.task.concurrency:用户端数据节点的并发度,默认值为1,当需要提升作业性能时,可以修改该参数,参考配置为CCE集群中规格时建议配置范围4~8,大规格部署时建议配置范围为8~16,具体根据实际需求和情况调整。 配置完成后,单击右下角的保存按钮即可新建一个隐私求交作业。
本节实验不再将训练集均匀划分到两个参与方,而是以不同的比例进行划分,从而探究当参与方数据量不同时,模型性能的变化情况。具体划分如下所示。实验中训练轮数固定为10,迭代次数固定为50。 参与方持有的样本数目信息 Host所持样本占比(%) Host样本数 Guest样本数 0.2 2946
图2 作业结果 在返回最终统计结果前,增加了一个差分隐私计算的任务节点,如图3所示。 图3 差分隐私计算任务节点 再执行如下sql,sql中过滤掉了某个企业,试图用差值去计算这个企业的税收值。 Select industry, sum(tax_bal), sum(electric_bal)
周期的可靠性监控、运维管理。 多方融合分析 对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点中实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。
connector_status String 连接器状态 1.NORMAL----正常 2.ABNORMAL----异常 3.STARTING----启动中 请求示例 获取连接器列表 get https://x.x.x.x:12345/v1/agents/connectors?offset=0&limit=10
状态码: 200 表3 响应Body参数 参数 参数类型 描述 status String 作业、任务状态:1.新建,2.已接收,3.运行中,4.成功,5.失败,6.终止 result String json格式:records 记录数;obs_path 文件存放地址; execute_time
用户Token。 用户Token也就是调用计算节点API“获取用户Token”接口的响应值,因此调用该接口时,不用填写本字段。 请求响应成功后在响应体中包含的“token”的值即为Token值。 TICS仅支持Token认证,该字段必选。 注:以下仅为Token示例片段 MIIPAgYJKoZIhvcNAQcCo
用户登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据申请”,打开数据申请页面。 在数据申请页面单击“我收到的”。 在“我收到的”数据申请页签中,选择已经确认的申请,单击“创建合约”。 图1 创建合约 在创建合约对话框填写合约信息。 数据合约的内容有五个部分,包括: 1、合约内容:合约名称、合约描述。
合预期结果,则单击列表下方的“保存并执行”按键执行预处理。 图5 添加预处理方法 执行预处理结束后,页面跳转到作业列表。单击预处理作业列表中的开发按钮,再次进入作业开发页面,页面展示数据转换后的各项统计结果。例如缺失值数量处理为0,特征放缩的字段最大值与最小值发生变化,离散特征编
参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。