检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过读取文件删除点边(2.2.15) 功能介绍 通过读取文件删除点边。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/action?action_id=delete-by-file 表1 路径参数 参数 是否必选 类型 说明
删除点label(1.1.6) 功能介绍 删除点label。 URI DELETE /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/{vertex_id}/labels/{label_name} 表1 路径参数 参数 是否必选
批量删除点(2.1.9) 功能介绍 根据批量节点ID删除节点。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/action?action_id=batch-delete 表1 路径参数 参数 是否必选 类型
边的label,当存在index参数时会被忽略,当index不存在时会尝试删除同时满足source/target/label条件的一条边。label不存在于schema中或同label的边不存在时不会删除任何边。 响应参数及示例 同步模式 表4 响应Body参数说明 参数 类型 说明
Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。 适用场景 聚类系数算法(Cluster
中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
按文件更新/删除数据 代码样例文件路径 代码样例文件名 对应的API com.huawei.ges.graph.sdk.v1.examples.fileoperation ImportPropertiesSample 通过导入文件更新点边的指定属性 DeleteByFileSample
删除过滤后的点(2.2.7) 功能介绍 删除满足过滤条件的点集合。 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_name 是 String 图名称。 URI POST /ges/v1.0/
企业IT应用 网络&IT基础设备规模庞大、结构复杂,帮助客户深入了解设备状态、设备之间的关系,实现全网络设备智能监控与管理。 该场景能帮助您实现以下功能。 合理规划网络 快速确定故障节点对网络的影响,并在最依赖的节点周围推荐备用路由,在新节点的规划时,精准规划网络位置。 分析故障根因
删除过滤后的边(2.2.7) 功能介绍 删除满足过滤条件的边集合。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/edges/action?action_id=delete 请求参数 表1 Body参数说明 参数 是否必选
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
on:表示文件系统的挂载点。 网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。 图5 网络页 用户可单击指定节点名称所在行最右侧的“监控”按钮,进入网络监控概览
一般情况下,建议就近选择靠近您或者您的目标用户的区域,这样可以减少网络时延,提高访问速度。不过,在基础设施、BGP网络品质、资源的操作与配置等方面,中国大陆各个区域间区别不大,如果您或者您的目标用户在中国大陆,可以不用考虑不同区域造成的网络时延问题。 在除中国大陆以外的亚太地区有业务的用户,可
全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。 参数说明 表1 全最短路径算法(All Shortest
Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘、路径规划、网络规划等场景。 参数说明 表1 Filtered All Shortest Paths参数说明 参数 是否必选
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
足过滤条件的环路。 适用场景 带一般过滤条件的环路检测(filtered circle detection)算法适用于金融风控中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。 参数说明 表1 filtered circle detection参数说明
、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1 filtered_n_paths参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起始点 String