已找到以下 54 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 数据探索 - 推荐系统 RES

    比。 图2 百分位数 分布统计:通过查看分布统计了解各参数下参数值的分布情况。如可以根据性别展示数据中的性别数据分布。可通过查看标签,了解数据中各种标签的分布情况。 图3 分布统计 物品报表:根据不同数据格式展示物品数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。

  • 部署服务 - 推荐系统 RES

    候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如下处理:先从items2中取在item1中出现的物品,如果个数不够,再从item2中取其余的物品填补。

  • RES操作流程 - 推荐系统 RES

    (可选)数据接入资源DIS 开通相关资源 绑定资源 针对您创建的集群等资源,需要完成绑定,才可以在创建作业时可选择绑定的集群进行计算存储等操作。 绑定资源 创建跨源链接 在使用DLI进行推荐系统的离线和近线计算时,建议创建跨源连接,用于访问CloudTable的数据源,提高读写性能。 创建跨源连接 开启公共终端节点

  • 进行服务授权 - 推荐系统 RES

    访问您在其他云产品中的资源,未授权将不能使用RES的完整功能。 图1 权限委托 单击“同意授权”系统会自动创建委托。由于RES与其他云服务之间存在业务交互关系,需要与这些云服务协同工作,因此需要您创建云服务委托,完成授权后将操作权限委托给RES,让RES以您的身份使用这些云服务,

  • 召回策略 - 推荐系统 RES

    权重值:权重影响不同物品属性匹配的程度,取值0.01-1,2位小数。 匹配个数度量:如果开启匹配个数度量, 同个特征匹配个数多的数据有优势。例如博客标签中,匹配5个标签(tags)比匹配1个标签(tags)更相关。如果不开启, 多值特征匹配时,匹配特征个数无关,都被视为匹配。 操作:可以单击操作列下面的进行删除某个匹配特征对。

  • 提交过滤作业 - 推荐系统 RES

    "job_id": "242040859dd4422d818efe7c297f1b66", "filter_uuid": "5666556ad3814f358a786eb6efcfe1ec" } 失败响应示例 { "is_success": false, "error_code":

  • 组合作业 - 推荐系统 RES

    完成后才可以正常使用排序策略。 各个策略的详细参数设置和输入输出请单击下方链接查看。 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM 核函数特征交互神经网络-PIN 在“创建组合作业”页面,配置完过滤规则参数之后,进入“排序策略”

  • 提交实时流近线作业 - 推荐系统 RES

    JSON 详情请参见表14。 tag_reduce_rate 否 Double 兴趣标签的衰减参数,数值越小,衰减能力越强。数值越大,衰减能力越弱。若值为0,则代表不衰减。 tags_mainten_length 否 Int 各标签体系下,兴趣标签的最大长度。 表14 canidate

  • 数据质量 - 推荐系统 RES

    会用到该文件。全局特征信息文件需要和画像中字段一致,其中BASIC_INFO为画像表中定义的基本属性字段,TAGS为画像表中定义的带权重的标签,Context为上下文属性。该文件用于说明数据字段信息,以便推荐系统识别用户离线数据,通过特征工程将对应的数据写入到画像中,同时用于排序训练和线上推理服务中使用。

  • 策略参数说明 - 推荐系统 RES

    Int 分解后的特征向量的长度。取值范围[1,100],默认10。 神经网络结构 (architecture) 是 List[Int] 神经网络的层数与每一层神经元节点个数。每一层神经元节点数不大于5000,神经网络层数不大于10。默认为400,400,400。 神经元值保留概率 (

  • 数据结构 - 推荐系统 RES

    您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中: 兴趣属性,此特征将会用于统计用户的兴趣标签,并生成特征名为“interested_原特征名”的特征。 关键词提取,只有当关键词为content和title时会进行关键词提取,并生成

  • 提交特征工程作业 - 推荐系统 RES

    (feature_type) 是 String 用户特征类型 : BASIC_INFO,基础信息类 TAGS,标签类 CONTEXT,上下文类 物品特征类型 BASIC_INFO,基础信息类 TAGS标签类 特征值类型 (feature_value _type) 是 String 该特征值的类型,支持4种不同类型的特征值,分别为:

  • 智能场景简介 - 推荐系统 RES

    猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果 根据不同的功能模块,获取对应的推荐结果。

  • 基本概念 - 推荐系统 RES

    通常在调用API的鉴权过程中,您需要用到账号、用户和密码等信息。 区域(Region) 从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属Region,通用Region

  • 创建自定义场景 - 推荐系统 RES

    似,或者经常被一起浏览或购买。如媒资平台将会计算物品之间的相似或关联程度,当用户查看了某个物品的时候,会推荐最相似/最相关的物品。 “基于物品推荐用户”:某些物品的属性、描述很相似,或者经常被一起购买。如房产平台会计算物品之间的相似或关联程度,当用户查看某个物品的时候,会推荐同时拥有该类型房源的房产经纪人。

  • 使用限制 - 推荐系统 RES

    FireFox : 38.0及更高版本。 Internet Explorer : 9.0及更高版本。 推荐系统属于高并发低时延场景,建议使用私有网络获取推荐结果。

  • 自定义场景简介 - 推荐系统 RES

    排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用

  • 基本概念 - 推荐系统 RES

    结果用于排序策略的训练。 排序策略 排序策略利用CTR预估或综合性计算的算法给候选集做打分。 在线服务 在线服务应用于做线上推荐,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 推荐引擎 以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。

  • 创建用户并授权使用RES - 推荐系统 RES

    根据企业的业务组织,在您的华为云帐号中,给企业中不同职能部门的员工创建IAM用户,让员工拥有唯一安全凭证,并使用RES资源。 根据企业用户的职能,设置不同的访问权限,以达到用户之间的权限隔离。 将RES资源委托给更专业、高效的其他华为云帐号或者云服务,这些账号或者云服务可以根据权限进行代运维。 如果华为云帐号已经能满

  • 过滤规则 - 推荐系统 RES

    consume:消费 use:观看视频/听音乐/阅读 download:下载 tip:打赏 subscribe:关注 行为过滤逻辑 各个频次之间的逻辑。 “AND”逻辑为在7天内点赞超过3次且在7天内消费超过3次的物品。 “OR”逻辑为在7天内点赞超过3次或在7天内消费超过3次的物品。