检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
字段,很可能是因为用户使用的jackson版本太老导致。 建议客户本地将jackson版本升级到和华为云java sdk一致,jackson版本要求请见pom.xml。 引用华为云java sdk的bundle包来解决jackson版本冲突的问题。 <dependency>
全量升级:新旧版本的服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。 图1 模型更新
不可替换或修改作业配置参数。 在“模型更新”或“修改部署”后进行升级配置操作。平台支持全量升级方式:新旧版本的服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。 图1 模型更新 图2 修改部署 父主题: 部署科学计算大模型
8及其以上版本。 Python SDK适用于Python3及以上版本。 Go SDK支持go 1.14及以上版本。 .NET SDK适用于.NET Standard 2.0及其以上版本;C# 4.0及其以上版本。 NodeJs SDK适用于Node 10.16.1及其以上版本。
ud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom
在“预置”页签可查看用户可使用的各类模型的预置资产。 图1 查看预置模型预置模型 单击模型,可在“版本列表”页签查看当前模型的历史版本,并执行模型的基本操作如训练、部署等。在“操作记录”页面可查看各版本的历史操作记录。 导出盘古大模型至其他局点 导出盘古大模型至其他局点前,请确保当前空间为该用户所创建的空间。
huaweicloud.com/videos/102987 。 请求示例如下图所示,一个请求主要由请求URI、请求方法、请求消息头和请求消息体组成,各个部分将在下文详细解释。 图1 请求示例图 请求URI 请求URI由如下部分组成。 {URI-scheme} :// {Endpoint} /
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。
128K 此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支持预置模型版本,不支持SFT后模型版本做128K序列长度推理部署。 Pangu-NLP-N2-Base-20241030 - 此版本是2024年
030 128K 此版本是2024年10月发布的十亿级模型版本,支持128K在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支持预置模型版本,不支持SFT后模型版本做128K推理部署。 Pangu-NLP-N2-Base-20241030 - 此版本是2024年10月发
Pangu-AI4S-Ocean_24h-20241030 此版本在Studio上首次发布,用于海洋基础要素预测,支持在线推理、能力调测特性,可以Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241030 此版本在Studio上首次发布,用于区
统一管,资产管理“全” ModelArts Studio大模型开发平台数据、模型、Agent应用在统一的入口进行管理,可以快速的掌握资产的使用情况、版本情况和溯源信息等。
估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。
与安全性。 模型资产:平台提供的模型资产涵盖了预置或训练后发布的模型,所有这些模型将存放于空间资产中进行统一管理。用户可查看预置模型的历史版本和操作记录,还可以执行模型的进一步操作,包括训练、压缩、部署等。此外,平台支持导出和导入盘古大模型的功能,使用户能够将其他局点的盘古大模型迁移到本局点,便于模型资源共享。
服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTPS的新版本协议。 200 OK 服务器已成功处理了请求。 201 Created 创建类的请求完全成功。 202 Accepted 已经接受请求,但未处理完成。
对于“低码”开发者(有一定代码开发经验),可以通过工作流方式,适当编写一定代码,来构建逻辑复杂、且有较高稳定性要求的Agent应用,开发者也可以灵活组合各个组件,包含LLM、自定义代码、分支等组件,通过“拖拉拽”的方式快速搭建一个工作流。 Agent开发平台功能及优势 Agent平台具有能力扩
模型资产:模型资产包括用户试用、订购或在平台上训练后发布的模型,这些模型统一存储在模型资产中,便于集中管理。用户可以查看模型的所有历史版本及操作记录,从而了解模型的演变过程。同时,平台支持一系列便捷的模型操作,如模型训练、压缩和部署,帮助用户简化模型开发和应用流程。此外,平台
NLP大模型开发流程 ModelArts Studio大模型开发平台提供了NLP大模型的全流程开发支持,涵盖了从数据处理到模型训练、压缩、部署、调用的各个环节。 NLP大模型开发流程见图4、表4。 图4 NLP大模型开发流程图 表4 NLP大模型开发流程表 流程 子流程 说明 操作指导 准备工作
间,从而提升整个流水线的效率。 每个数据并行下的批处理大小 设置在并行训练中,每个微批次包含的数据批量大小,适当的数据批量大小能够确保训练各个阶段都能充分利用计算资源,提升并行效率。 数据配置 训练数据 选择训练模型所需的数据集。要求数据集经过发布操作,发布数据集操作方法请参见发布数据集。