检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 使用ModelArts Standard一键完成商超商品识别模型部署
Function Calling介绍 使用场景 大语言模型的Function Calling能力允许模型调用外部函数或服务,以扩展其自身的能力,执行它本身无法完成的任务。以下是一些Function Calling的使用场景: 表1 Function Calling使用场景说明 使用场景
配置Grafana数据源 在Grafana配置数据源后,即可通过Grafana查看ModelArts的监控数据。 前提条件 已安装Grafana。 配置Grafana数据源 获取Grafana数据源配置代码。 进入AOM管理控制台。 图1 AOM管理控制台 在左侧导航栏中选择“Prometheus监控
导入模型 如何将Keras的.h5格式模型导入到ModelArts中 导入模型时,模型配置文件中的安装包依赖参数如何编写? 使用自定义镜像创建在线服务,如何修改默认端口 ModelArts平台是否支持多模型导入 导入AI应用对于镜像大小的限制 父主题: 模型管理
使用ModelArts Standard自动学习实现垃圾分类 随着科技发展与人们生活质量的快速提升,生活垃圾分类成为当下越来越热门的话题,常见的生活垃圾分为厨余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾
使用ModelArts Standard自动学习实现垃圾分类 随着科技发展与人们生活质量的快速提升,生活垃圾分类成为当下越来越热门的话题,常见的生活垃圾分为厨余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
硬盘限制故障 下载或读取文件报错,提示超时、无剩余空间 复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device”
(可选)Session鉴权 Session鉴权概述 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。当成功建立Session后,您可以直接调用ModelArts的SDK接口。 ModelArts开发环境
Notebook中构建新镜像 ModelArts中注册镜像 通过ECS获取和上传基础镜像将基础镜像上传后,可在SWR中查看已上传的镜像。但在ModelArts中还需要完成镜像注册后,才能在后续的Notebook中使用。镜像注册的操作步骤如下: 登录ModelArts管理控制台,在左侧导航栏单击“镜像管理”。
同一个账户,图片展示角度不同是为什么? 有的图片存在旋转角度等属性,不同的浏览器的处理策略不同,对浏览器的兼容性如表1和表2所示。 L代表last,L3-产品版本上线时最新的3个稳定浏览器版本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。
在ModelArts使用自定义镜像创建训练作业时如何激活conda环境? 由于训练作业运行时不是交互式的shell环境,因此无法直接使用“conda activate”命令激活指定的conda环境。但是,在自定义镜像中可参考以下命令激活conda环境: source /home/
在线服务 部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 在线服务预测时,如何提高预测速度? 调整模型后,部署新版本AI应用能否保持原API接口不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在
upload后,数据将上传到哪里? 针对这个问题,有两种情况: 如果您创建的Notebook使用OBS存储实例时 单击“upload”后,数据将直接上传到该Notebook实例对应的OBS路径下,即创建Notebook时指定的OBS路径。 如果您创建的Notebook使用EVS存储实例时
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
使用Cloud Shell调试生产训练作业 ModelArts Standard提供了Cloud Shell,可以登录运行中的容器,用于调试生产环境的训练作业。 约束限制 仅专属资源池支持使用Cloud Shell登录训练容器,且训练作业必须处于“运行中”状态。 前提条件:给子账号配置允许使用Cloud
精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc
在ModelArts Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。