检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何在ModelArts的Notebook的CodeLab上安装依赖? ModelArts CodeLab中已安装Jupyter、Python程序包等多种环境,您也可以使用pip install在Notebook或Terminal中安装依赖包。 在Notebook中安装 在总览页面进入CodeLab。 在
开发环境(旧版) 创建开发环境实例 查询开发环境实例列表 查询开发环境实例详情 更新开发环境实例信息 删除开发环境实例 管理开发环境实例 父主题: 历史API
--max-depth 0 如果Notebook实例的存储配置采用的是云硬盘EVS,可在Notebook详情页申请扩容磁盘。 建议与总结 建议在使用Notebook时注意磁盘空间大小,随时删除不需要的文件。以免因磁盘空间问题导致训练失败。 父主题: 环境配置故障
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
JupyterLab中文件保存失败,如何解决? 问题现象 JupyterLab中保存文件时报错如下: 原因分析 浏览器安装了第三方插件proxy进行了拦截,导致无法进行保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。
Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。 父主题:
在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env | grep
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
aom:metric:list aom:alarm:list 实例的启动、停止、创建、删除、更新等依赖的权限。 建议配置。 仅在严格授权模式开启后,需要显式配置左侧权限。 动态挂载存储配置 ModelArts modelarts:notebook:listMountedStorages mo
配置Lite Server软件环境 NPU服务器上配置Lite Server资源软件环境 GPU服务器上配置Lite Server资源软件环境 父主题: Lite Server资源配置
原因2:NCCL_SOCKET_IFNAME设置错误。当用户的NCCL版本低于2.14时,则需要手动设置NCCL_SOCKET_IFNAME环境变量。 处理方法 针对原因1,需要在代码中补充如下环境变量。 import os os.environ["NCCL_IB_TC"] = "128" os.environ
用户如何设置默认的kernel? 用户希望打开Notebook默认的kernel为自己自定义的kernel。 解决方式: 在Terminal里执行如下命令在镜像里指定环境变量。 # python-3.7.10这里指用户想设置的kernel名称 export KG_DEFAULT_KERNEL_NAME=python-3
附录:微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
使用此类镜像做基础镜像,安装自己需要的引擎版本和依赖包,可扩展性更高。并且这些镜像预置了一些开发环境启动所必要的配置,用户无需对此做任何适配,安装所需的软件包即可使用。 此类镜像为最基础的镜像,主要应对用户做自定义镜像时基础镜像太大的问题,所以镜像中未安装任何组件;如果需使用OBS
客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令退出当前虚拟环境,默认进入base环境。执行pip list命令查询已安装的包,然后安装需要的依赖进行保存,最后切换至指定的虚拟环境后再运行脚本。
在部署为在线服务时,即“部署”页面,填写部署服务相关参数时,开启支持APP认证功能。 针对已部署完成的在线服务,进入在线服务管理页面,单击目标服务名称“操作”列的“修改”按钮,进入修改服务页面开启支持APP认证功能。 图1 部署页面开启支持APP认证功能 选择APP授权配置。从下拉列表中选择您需要
Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析。 多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。
Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx 问题现象 在Notebook中安装依赖包时报错,报错截图如下: 原因分析 pypi源没有这个包或源不可用。 解决方案 使用别的源下载。 pip install -i 源地址