检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
边操作 包名 样例类名 对应的API com.huawei.ges.graph.sdk.v1.examples.edges EdgesFilterQuerySample 边过滤查询 QueryEdgeDetailsSample 边详情查询 AddEdgeSample 添加边 DeleteEdgeSample
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
对于该source节点的随机游走将提前结束。 Int 1~2000 1000 label 否 希望输出的点的类型。 说明: 其值为空时,将不考虑点的类型,输出算法原始计算结果。 对其赋值时,将从计算结果中过滤出具有该“label”的点的返回。 String 节点label - directed
算法 包名 样例类名 对应的API com.huawei.ges.graph.sdk.v1.examples.algorithm PagerankSample PageRank算法 PersonalrankSample Personalrank算法 KcoreSample K核算法
属性页签展示选中点或边的属性信息。 统计信息展示页签会显示出当前所框选的点边对应的标签和节点权重的数量。具体介绍请参考统计信息展示。 图2 算法区 表2 算法区介绍 界面元素 说明 输入算法名称,快速查找对应的算法。 展开算法的参数配置区域。 运行算法。 算法的属性设置区域。每个算法的属性不同,详细信息请参考算法介绍。
> //此处需要输入当前业务面sdk的版本号 </dependency> Maven源不可用 下载相应的SDK和驱动,具体操作请参考连接管理。 新建工程,解压huaweicloud-ges-sdk-java-xxx.zip,将jars目录下的graph-sdk-xxx-jar-with-dependencies
器下。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。 如何选择可用区 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。
最小化的安全管控要求。 策略:IAM最新提供的一种细粒度授权的能力,可以精确到具体服务的操作、资源以及请求条件等。基于策略的授权是一种更加灵活的授权方式,能够满足企业对权限最小化的安全管控要求。例如:针对GES服务,管理员能够控制IAM用户仅能对某一类云服务器资源进行指定的管理操作。
SDK)是对GES提供的REST API进行的封装,以简化用户的开发工作。 SDK 业务面SDK 管理面SDK Cypher JDBC Driver访问GES 02 购买 GES的计费简单、易于预测,您既可以选择按照小时费率计费的按需计费方式,也可以选择更经济的预付费实例计费方式。
备份文件类型不同,浏览器打开该链接的方式不同。 例如:文本文件可直接通过浏览器打开浏览,而二进制文件会在浏览器打开时,自动下载到本地。如果需要完整的下载所有备份文件,建议通过某种编程语言的的HTTP库下载,比如Java的HttpClient、Python的requests等。 link_expired_time
scope参数定义了Token的作用域,下面示例中获取的Token仅能访问project下的资源。您还可以设置Token的作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见IAM获取用户Token。 POST https: //iam.cn-north-1
动态图的表示形式粒度最细,保留信息更加全面。 本服务支持连续型动态图的建模方式: 例如图2,此图数据由3个点和3条边组成,Vivian、P1和P2表示点,(Vivian,P1)、(Vivian,P2)和(Vivian、Vivian)表示边,Person、Place表示点的类型(标
NOTIN; 判断左值(标签、id、属性值)是否在右值(必须是array类型)中,和内存版的左值和右值是否有交集的语义有区别。 不支持CONTAIN、NOTCONTAIN、SUBSET等集合运算。 匹配:右值是左值的PREFIX(前缀)、NOTPREFIX(非前缀)、 SUFFIX(后缀)
化地计算网络节点的相关性和重要性(PersonalRank值越高,对source节点的相关性/重要性越高)。 k核算法(k-core) k-core是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的刻画了节点的传播能力。 k跳算法(k-hop)
管理、图数据增删改和查询分析等能力,适配Cypher查询语言外,还为用户提供了图数据的持久化功能,将用户写入的数据落盘,通过多副本和硬件冗余等方式,实现高可用和快速故障恢复,目前持久化版已完成千亿和万亿的大规模图存储和查询验证。 现将图规格为持久化版的图支持的API单独成章节,方便您查阅和使用。
统计信息展示 通过框选画布中点和边,在统计信息区会显示出当前所框选的点边对应的标签和节点权重的数量。关于点和边的概念请参考图数据格式。 统计信息展示的具体操作如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 单击绘图区右侧的,显示“条件过滤、属性和统计信息”页面,单击“统计信息”页签。
空:边上的权重、距离默认为“1” 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为“1” 说明: 边上权重应大于0。 weight 关于迭代次数(iterations)和收敛精度(convergence)参数如何调节,请参考迭代次数和收敛精度的关系。 表2 reponse_data参数说明
没有任何节点标注信息的情况。 字符串:将节点的对应的属性字段取值作为初始化标签(类型为string,对于未知标签的点,初始化标签字段赋空);适用于已标注部分节点标签,预测未知节点标签的情况。 说明: 当initial取值为“字符串”时,其中具有初始化标签的点的数量应大于0,小于点总数。