检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么我的计算结果每次计算时结果都不一样? 当空间开启了“结果差分隐私”开关时, 对敏感数据字段的sum操作都会添加一个差分噪声,来保护单条敏感数据不被泄露。 如果需要更精确的结果, 可联系空间管理员关闭“结果差分隐私”开关, 或者联系敏感字段的合作方修改字段分类。
一个CCE集群可以为同一用户的多个空间使用吗? TICS计算节点支持部署到CCE集群上。但当前在购买TICS服务时仅支持直接创建CCE集群,不支持选择已有的CCE集群。 因此一个CCE集群只能供一个空间使用,且必须是随TICS服务购买时直接创建的CCE集群,不能是已有集群。 CCE集群的部署规格根据您的业务量自行选择。
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
创建实时隐匿查询作业 实时隐匿查询作业需要由数据查询方创建作业,企业A单击“作业管理 > 隐匿查询 > 实时隐匿查询”页面的创建按钮,填写相关信息,例如: 其中“不可区分度”即为实时隐匿查询的安全级别,不可区分度越高,则安全级别越高,但查询的速度会变慢,传输的数据量也会变大。 企
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
阶段四:基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 前提条件 完成审批防护。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
进入购买计算节点页面。 部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为客户机器或者云上虚机,TICS服务无法主动感知到节点资源大小,需客户手动填入。 图1 资源分配策略 这样就会有不
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
阶段五:基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi +
可信计算节点发生主备切换,原节点登录地址不可用,如何处理? 若可信节点因为节点故障等原因产生了主备切换的操作,会导致原先可信节点控制台登录地址改变。此时需重新登录TICS管理台,单击前往计算节点,登录最新的节点控制台。 图1 登录最新的节点控制台 原先的可信节点控制台登录后右上角会显示不互信。
执行联邦学习作业时,报“ERROR UNAVAILABLE:Network closed for unknown reason”,如何解决? 问题描述 执行联邦作业时,出现“ERROR UNAVAILABLE:Network closed for unknown reason”报错信息。
为什么空间详情中“作业执行统计”实例数与空间作业中实例数统计不一致? 空间作业中的实例数统计的是实例总个数,而空间详情中“作业执行统计”实例数统计全部实例的总执行次数,可能存在一个实例执行多轮的情况。所以两个实例数统计不一致也是很正常的。