检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 准备工作
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
选择运行环境:CPU、GPU或ASCEND。 勾选“我已阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》”。 图2 发布AI Gallery Notebook 界面提示成功创建分享后,返回至AI Gallery,进入示例的详情页面查看示例。
据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret
据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret
据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret
对当前代码进行打断点,即在代码左侧进行单击,就会出现小红点。 此时,即可按照正常的代码调试步骤对代码调试,在界面左边会显示debug信息,代码上方有相应的调试步骤。 常见问题 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 远程连接出现弹窗报错:Could
型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。 include_tokens_per_second include_num_input_tokens_seen true 用于在训练过
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints.openai.api_server --model <your_model>
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints.openai.api_server --model <your_model>
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step6 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints.openai.api_server --model <your_model>
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
/ : * ? " < > | ' &”。 勾选“我已阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》”。 选择运行环境:CPU、GPU或ASCEND。 图2 发布AI Gallery Notebook 界面提示成功创建分享后,单击“”跳转至AI
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization