检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nd应用样例。 模型训练:ModelArts中支持使用Snt9、Snt9B训练模型。 模型推理:在ModelArts中将模型部署上线为在线服务时,支持使用Snt3、Snt3P、Snt9、Snt9B规格资源进行模型推理。 父主题: 一般性问题
问题,这是使用warm up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorflow分布式有多种执行模式,mox会通过4次执行50 step记录执行时间,选择执行时间最少的模型。 处理方法 创建训练作业时,在“运行参数”中增加参数“
service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://
数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret
序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GPU编号。如果未进行添加配置则该编号对应的GPU不可用。 父主题: GPU相关问题
e Diffusion v1.5的onnx pipeline代码为例进行说明。 进入容器环境,创建自己的工作目录。 由于在Snt9B裸金属服务器环境配置指南的配置环境步骤中,在启动容器时将物理机的home目录挂载到容器的“/home_host”目录下,该目录可以直接使用上传到物理
UserKnownHostsFile=/dev/null ForwardAgent yes 提示:增加参数后SSH登录时会忽略known_hosts文件,有安全风险。 父主题: VS Code连接开发环境失败故障处理
署 > 在线服务”,在“在线服务”列表页,复制实例名称。 单击服务名称进入服务详情页,在“配置更新记录”页签中,单击模型名称,进入模型详情页。 在“基本信息”中,复制模型的ID。 图3 获取模型ID 根据查询到的资源名称拼接账单中上报的资源名称。 拼接规则:在线服务名称-模型的ID
UserKnownHostsFile=/dev/null ForwardAgent yes 提示:增加参数后SSH登录时会忽略known_hosts文件,有安全风险。 父主题: VS Code连接开发环境失败常见问题
欠费后,ModelArts的资源是否会被删除? 欠费后,ModelArts的资源不会被立即删除。 欠费后,您可以在“费用中心”查看欠费详情。为了防止相关资源不会被停止服务或者逾期释放,您需要及时进行还款或充值。 查询欠费步骤 登录管理控制台。 单击页面右上角的“费用”进入“费用中心”页面。 在“总览”页面可以查看到当前的欠费金额。
ModelArts提供AI工具链、AI算力,成本由AI算力的资源成本和运维成本构成。 成本分配 ModelArts支持企业项目管理,可以由企业项目服务来管理同一账号下不同项目的成本。 成本分析 通过华为云费用账单来分析账号下的成本支出情况。 成本优化 长期使用的资源,建议客户使用更优惠的
欠费后,ModelArts的资源是否会被删除? 欠费后,ModelArts的资源不会被立即删除。 欠费后,您可以在“费用中心”查看欠费详情。为了防止相关资源不会被停止服务或者逾期释放,您需要及时进行还款或充值。 查询欠费步骤 登录管理控制台。 单击页面右上角的“费用”进入“费用中心”页面。 在“总览”页面可以查看到当前的欠费金额。
创建失败的专属资源池删除后,控制台为什么还能看到? 在控制台页面操作删除专属资源池后,后端服务需要进行资源实例释放。在资源实例释放过程中,用户依然可以查询到资源池。如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。如果做UI自动化测试,建议用例用随机串替代。
指标 ModelArts会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况以及开发环境、训练作业、推理服务的关键资源的使用情况,并上报到AOM,用户可直接在AOM上查看。 登录AOM控制台查看监控指标 登录控制台,搜索AOM,进入“应用运维管理”控制台。
nel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization
nel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization
nel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization
入误差;再者,模型本身的算法设计过程也可能会引入不收敛情况;最后,则是不符合预期的计算或者通信导致的模型收敛问题。 在迁移流程中,一般已经有模型训练的标杆,因此主要关注昇腾软件栈引入的精度偏差即可。由于昇腾芯片和GPU芯片的架构差异(包括不同架构下的GPU芯片),收到数值计算精度
集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train
用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 预测分析对数据集的要求 训练数据: 训练数据列数一致,总数据量不少于100条不同数据(有一个特征取值不同,即视为不同数据)。 训练数据列内容不能有时间戳格式(如:yy-mm-dd、yyyy-mm-dd等)的数据。 如果某一列的取