检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,若直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
s 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,若希望使用第一和第二张卡,则“export
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 图2 不同类型的推理作业使用场景 父主题: 使用ModelArts Standard部署模型并推理预测
Cluster资源池上使用Snt9B完成推理任务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图
享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资源。如需切换为GPU,请在右侧窗口,更换GPU规格。 在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用Ascend资源。 如果是AI
Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI Gallery在线推理服务部署模型。 图1 AI Gallery使用流程 AI Gallery也支持管理从ModelArts中发布的
如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理
返回结果如图2所示:predict为目标列的预测结果。 图2 预测结果 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。
创建方式 适用场景 使用预置框架创建训练作业 如果您已在本地使用一些常用框架完成算法开发,您可以选择常用框架,创建训练作业来构建模型 使用自定义镜像创建训练作业 如果您开发算法时使用的框架并不是常用框架,您可以将算法构建为一个自定义镜像,通过自定义镜像创建训练作业。 使用已有算法创建训练作业
系统容器异常退出 问题现象 在训练创建后出现“系统容器异常退出”的故障。 [ModelArts Service Log]2022-10-11 19:18:23,267 - file_io.py[1ine:748] - ERROR: stat:404 errorCode:NoSuchKey
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
Quant-W8A8”时才需要配置。建议使用默认值。 取值范围:0~1 默认值:0.5 压缩后模型权重保存路径 选择压缩后模型权重文件存放的OBS路径。 资源设置 资源池类型 资源池分为公共资源池与专属资源池。 公共资源池供所有租户共享使用。 专属资源池需单独创建,不与其他租户共享。
有效token,即用1.5倍的时间代价,生成了3倍的token数量,性能提升了100%。 投机推理参数设置 在启动离线或在线推理服务时参考表1所示配置参数,使用投机推理功能。 表1 投机推理相关参数 服务启动方式 配置项 取值类型 配置说明 offline speculative_model