检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:repository:getNamespace swr:repository:listNamespace
write(ttf.content) 35 # FONT_PATH = "SimSun.ttf" FONT_PATH = os.path.join(os.getenv('DATA'), "SimSun.ttf" 父主题: 训练脚本说明
自如何获取ModelArts训练容器中的文件实际路径? 如果容器中的文件实际路径不清楚,可以使用Python获取当前文件路径的方法获取。 os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径) 也可在搜索引擎寻找
'/cache/hdf_tmp' file_name = os.path.basename(path_or_buf) mox.file.make_dirs(tmp_dir) local_file = os.path.join(tmp_dir, file_name)
考如下处理方法: 在业务执行前加如下命令,检查是否能找到so文件。如果已经找到so文件,执行2;如果没有找到,执行3。 import os; os.system(find /usr -name *libcudart.so*); 设置环境变量LD_LIBRARY_PATH,设置完成后,重新下发作业即可。
write(ttf.content) 35 # FONT_PATH = "SimSun.ttf" FONT_PATH = os.path.join(os.getenv('DATA'), "SimSun.ttf") 父主题: 训练脚本说明
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
Mox日志反复输出的问题,需要您在“启动文件”中添加如下代码,当“MOX_SILENT_MODE = “1””时,可在日志中屏蔽mox的版本信息: import os os.environ["MOX_SILENT_MODE"] = "1" 父主题: MoXing
的资源,“/cache”与代码目录共用10G,会造成内存不足,请更改为使用GPU资源。 请在代码中添加环境变量来解决。 import os os.system('export TMPDIR=/cache') 父主题: 硬盘限制故障
ts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789: 在ECS密钥对管理中找不到指定的ssh密钥对xxx,请更新密钥对并重试。 父主题: 典型场景配置实践
/home/ma-user/work/model/llama-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME
ts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789: 在ECS密钥对管理中找不到指定的ssh密钥对xxx,请更新密钥对并重试。 父主题: 管理Notebook实例
节点池管理 查询OS的配额
鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理 > AI专属资源池 > 弹性节点Server”中查询对应ID。
上,这样会导致下载数据很慢。 在训练作业中,使用如下代码进行“.tar”包解压: import moxing as mox import os mox.file.copy_parallel("obs://donotdel-modelarts-test/AI/data/PyTorch-1
码。 import pandas as pd import moxing as mox mox.file.shift('os', 'mox') # 将os的open操作替换为mox.file.File适配OBS路径的操作 param = {'encoding': 'utf-8'}
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
ls/{pool_name}/nodes/batch-reboot { "nodeNames" : [ "os-node-created-vrvrq", "os-node-created-4jczv" ] } 响应示例 状态码: 200 OK。 { "job_id" :
处理方法 如果在训练作业的工作目录下有core文件生成,可以在启动脚本最前面加上如下代码,来关闭core文件产生。 import os os.system("ulimit -c 0") 排查数据集大小,checkpoint保存文件大小,是否占满了磁盘空间。 必现的问题,使用本